Skip to main content

Toward Absolute Quantitation of Bold Functional MRI

  • Chapter
Oxygen Transport to Tissue XXI

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 471))

Abstract

Blood-oxygenation level dependent (BOLD) image contrast in magnetic resonance imaging (MRI) has been widely used in the field of functional imaging to interpret changes in focal brain activity in response to stimuli. The BOLD image contrast relies on activation-induced changes in the magnetic properties of blood (Ogawa et al, 1990; 1993a; 1993b; Shulman et al., 1993; Kennan et al., 1994). The presence of paramagnetic deoxyhemoglobin in the microvasculature creates a magnetic susceptibility difference between the vessels and the surrounding tissue, thus producing a microscopic magnetic field gradient. The microscopic field gradients affect the value of R2* (i.e., apparent transverse relaxation rate of tissue water) which can be mapped by a gradient-echo MRI sequence. The equilibrium between deoxy- and oxyhemoglobin can be shifted by altering the blood oxygenation, and since deoxy- and oxyhemoglobin are para- and diamagnetic, respectively, BOLD image contrast can be created, whereby hemoglobin acts as an endogenous MRI contrast agent. A BOLD functional MRI sequence measures the changes in R2* upon activation. The quantitative change in R2* is determined by parameters which influence the microscopic field gradient such as the geometry of vessels, static magnetic field strength, and the concentration of deoxyhemoglobin within the vessels (Ogawa et al., 1993a; 1993b; Kennan et al., 1994). The concentration of deoxyhemoglobin or the local blood oxygenation fraction (Y) in the microvasculature is determined by the regional values of cerebral metabolic rates of oxygen consumption (CMRO2), cerebral blood flow (CBF), and volume (CBV) (Ogawa et al., 1993a; 1993b; Kennan et al., 1994). While geometry and morphology of microvessels are important for the basal BOLD image contrast at a particular magnetic field strength, it is only the change in concentration of deoxyhemoglobin, due to a short-lived and/or transient physiological perturbation, that is important for being able to quantitate the BOLD signal change for functional MRI (see Appendix).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bandettini PA, Wong EC, Jesmanowicz A, Hinks RS, and Hyde JS (1994) Spin-echo and gradient echo EPI of human brain activation using BOLD contrast: a comparative study at 1.5 T. NMR in Biomed 7:12–20.

    Article  CAS  Google Scholar 

  • Buxton RB and Frank LR (1997) A model for the coupling between cerebral blood flow and oxygen metabolism during neural stimulation. J Cereb Blood Flow Metab 17:64–72.

    Article  PubMed  CAS  Google Scholar 

  • Chen JL, Wei L, Bereczki D, Hans FJ, Otsuka T, Acuff V, Ghersi-Egea JF, Patlak C, and Fenstermacher JD (1995) Nicotine raises the influx of permeable solutes across the rat blood-brain barrier with little or no capillary recruitment. J Cereb Blood Flow Metab 15:687–698.

    Article  PubMed  CAS  Google Scholar 

  • Fox PT and Raichle ME (1986) Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc Natl Acad Sci USA 83:1140–1144.

    Article  PubMed  CAS  Google Scholar 

  • Fox PT, Raichle ME, Mintun MA, and Dence C (1988) Nonoxidative glucose consumption during focal physiologic neural activity. Science 241:462–464.

    Article  PubMed  CAS  Google Scholar 

  • Gruetter R (1993) Automatic, localized in vivo adjustment of all first-and second order shim coils. Magn Resort Med 29:804–811.

    Article  CAS  Google Scholar 

  • Grunwald F, Schrock H, and Kuschinsky W (1991) The influence of nicotine on local cerebral blood flow in rats. Neurosci Lett 124:108–110.

    Article  PubMed  CAS  Google Scholar 

  • Gyngell ML, Bock C, Schmitz B, Hoehn-Berlage M, and Hossmann KA (1996) Variation of functional MRI signal in response to frequency of somatosensory stimulation in a-chloralose anesthetized rats. Magn Reson Med 36:13–15.

    Article  PubMed  CAS  Google Scholar 

  • Hernandez MJ, Brennan RW, and Bowman GS (1978) Cerebral blood flow autoregulation in the rat. Stroke 9:150–155.

    Article  PubMed  CAS  Google Scholar 

  • Hyder F, Rothman DL, and Blamire AM (1995) Image reconstruction of sequentially sampled echo-planar data. Magn Reson Imaging 13:97–103.

    Article  PubMed  CAS  Google Scholar 

  • Hyder F, Chase JR, Behar KL, Mason GF, Siddeek M, Rothman DL, and Shulman RG (1996) Increased tricarboxylic acid cycle flux in rat brain during forepaw stimulation detected with lH [13C] NMR. Proc Natl Acad Sci USA 93:7612–7617.

    Article  PubMed  CAS  Google Scholar 

  • Hyder F, Rothman DL, Mason GF, Rangarajan A, Behar KL, and Shulman RG (1997) Oxidative glucose metabolism in rat brain during single forepaw stimulation: a spatially localized 1H[13C] nuclear magnetic resonance study. J Cereb Blood Flow Metab 17:1040–1047.

    Article  PubMed  CAS  Google Scholar 

  • Hyder F, Kennan RP, Sibson NR, Mason GF, Behar KL, Rothman DL, and Shulman RG (1998a) Cerebral oxygen delivery in vivo: NMR measurements of CBF and CMRO2 at different levels of brain activity. in “Proc. of ISMRM, 6th Scientific Meeting, 1998” p. 1160.

    Google Scholar 

  • Hyder F, Shulman RG, and Rothman DL (1998b) A model for the regulation of cerebral oxygen delivery. J Appl Physiol 85:554–564.

    PubMed  CAS  Google Scholar 

  • Kennan RP, Zhong J, and Gore JC (1994) Intravascular susceptibility contrast mechanisms in tissue. Magn Reson Med 31:9–21.

    Article  PubMed  CAS  Google Scholar 

  • Kennan RP, Scanley BE, and Gore JC (1997) Physiologic basis for BOLD MR signal changes due to hypoxia/hyperoxia: separation of blood volume and magnetic susceptibility effects. Magn Reson Med 37:953–956.

    Article  PubMed  CAS  Google Scholar 

  • Kennan RP, Scanley BE, and Gore JC (1998) Physiological basis for BOLD MR signal changes due to neuronal stimulation: separation of blood volume and magnetic susceptibility effects. Magn Reson Med (in press).

    Google Scholar 

  • Kida I, Yamamoto T, and Tamura M (1996) Interpretation of BOLD MRI signals in rat brain using simultaneously measured near-infrared spectrophotometric information. NMR in Biomed 9:333–338.

    Article  CAS  Google Scholar 

  • Kim SG and, Ugurbil K (1997) Comparison of blood oxygenation and cerebral blood flow effects in fMRI: estimation of relative oxygen consumption change. Magn Reson Med 38:59–65.

    Article  PubMed  CAS  Google Scholar 

  • Menon RS, Ogawa S, Tank DW, and Ugurbil K (1993) 4 Tesla gradient recalled echo characteristics of photic stimulation-induced signal changes in the human primary visual cortex. Magn Reson Med 30:380–386.

    Article  PubMed  CAS  Google Scholar 

  • Mosher TJ and Smith MB (1990) A DANTE tagging sequence for the evaluation of translational sample motion. Magn Reson Med 15:334–339.

    Article  PubMed  CAS  Google Scholar 

  • Ogawa S, LEE TM, Sha A, Nayak S, and Glynn P (1990) Oxygenation-sensitive contrast in magnetic resonance imaging of rodent brain at high magnetic fields. Magn Reson Med 14:68–78.

    Article  PubMed  CAS  Google Scholar 

  • Ogawa S, Tank DW, Menon RS, Ellermann JM, Kim SG, Merkle H, and Ugurbil K (1992) Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci USA 89:5951–5955.

    Article  PubMed  CAS  Google Scholar 

  • Ogawa S, Menon RS, Tank DW, Kim SG, Merkle H, Ellermann JM, and Ugurbil K (1993a) Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging: a comparison of signal characteristics with a biophysical model. Biophys J 64:803–812.

    Article  PubMed  CAS  Google Scholar 

  • Ogawa S, LEE TM, and Barrere B (1993b) The sensitivity of magnetic resonance image signal of a rat brain to changes in the cerebral venous blood oxygenation. Magn Reson Med 29:205–210.

    Article  PubMed  CAS  Google Scholar 

  • Otsuka T, Wei L, Acuff VR, Shimizu A, Pettigrew KD, Patlak, CS, and Fenstermarcher JD (1991) Variation in local cerebral blood flow response to high-dose pentobarbital sodium in the rat. Am J Physiol 261:H110–H120.

    PubMed  CAS  Google Scholar 

  • Prielmeier F, Nagatomo Y and Frahm J (1994) Cerebral blood oxygenation in rat brain during hypoxic hypoxia. Quantitative MRI of effective transverse relaxation rates. Magn Reson Med 31:678–681.

    Article  CAS  Google Scholar 

  • Schwarzbauer C, Morrissey SP, and Haase A (1996) Quantitative magnetic resonance imaging of perfusion using magnetic labeling of water proton spins within the detection slice. Magn Reson Med 35:540–546.

    Article  PubMed  CAS  Google Scholar 

  • Shulman RG, Blamire AM, Rothman DL, and McCarthy G (1993) Nuclear magnetic resonance imaging and spectroscopy of human brain function. Proc Natl Acad Sci USA 90:3127–3133.

    Article  PubMed  CAS  Google Scholar 

  • Ueki M, Linn F, and Hossmann KA (1988) Functional activation of cerebral blood flow and metabolism and after global ischemia of rat brain. J Cereb Blood Flow Metab 8:486–494.

    Article  PubMed  CAS  Google Scholar 

  • Wei L, Ostuka T, Acuff V, Bereczki D, Pettigrew K, Patlak C, and Fenstermacher JD (1993) The velocities of red cell and plasma flows through parenchymal microvessels of rat brain are decreased by pentobarbital. J Cereb Blood Flow Metab 13:487–497.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kida, I., Hyder, F., Kennan, R.P., Behar, K.L. (1999). Toward Absolute Quantitation of Bold Functional MRI. In: Eke, A., Delpy, D.T. (eds) Oxygen Transport to Tissue XXI. Advances in Experimental Medicine and Biology, vol 471. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4717-4_78

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4717-4_78

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7137-3

  • Online ISBN: 978-1-4615-4717-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics