Skip to main content

Comparative Structure of the Respiratory Tract: Airway Architecture in Humans and Animals

  • Chapter
Pulmonary Immunotoxicology

Abstract

The mammalian respiratory system is a structurally complex arrangement of organs designed principally for the intake of oxygen and the elimination of carbon dioxide (i.e., respiration). Though its main function is gas exchange, the respiratory system is composed of specialized tissues and cells that have other important functions such as the production of proteins and lipids, the activation and inactivation of hormones, and the metabolism of xenobiotic compounds entering the body through inhalation or other routes. Another important function of the respiratory system is defense against inhaled infectious (e.g., bacteria, viruses, fungi) and non-infectious agents (e.g., respirable dusts and gaseous air pollutants). The respiratory tract comprises the largest mucosal surface of the body with an internal surface area that is 25 times greater than the external surface of the body covered by skin. In contrast to the other mucosa-lined organs of the body (e.g., alimentary and reproductive), that are only periodically exposed to the external environment, the respiratory organs are constantly being exposed to large amounts of inhaled air. An adult human at rest takes in 10,000-15,000 L of ambient air through the nasal passages each day. Therefore the respiratory tract serves as an important interface between the environment and the host and plays a crucial role in maintaining the immune status of the body.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adler KB, Hendley DD, Davis GS. Bacteria associated with obstructive pulmonary disease elaborate extracellular products that stimulate mucin secretion by explants of guinea pig airways. Am. J. Pathol., 1986;125:501–514.

    PubMed  CAS  Google Scholar 

  • Aikawa T, Shimura S, Sasaki H, Ebina M, Takishima T. Marked goblet cell hyperplasia with mucus accumulation in the airwaya of patients who died of severe acute asthma attack. Chest, 1992;101:916–921.

    Article  PubMed  CAS  Google Scholar 

  • Alarie Y. Bioassay for evaluating the potency of airborne sensory irritants and predicting acceptable levels of exposure in man. Food Cosmet. Toxicol., 1981;19:623–626.

    Article  PubMed  CAS  Google Scholar 

  • Ali M, Maniscalco J, Baraniuk JN. Spontaneous release of submucosal gland serous and mucous cell macromolecules from human nasal explants in vitro. Am. J. Physiol., 1996;270:L595–L600.

    PubMed  CAS  Google Scholar 

  • Allen JN, Davis WB. “Eosinophils.” In The Lung: Scientific Foundations, RG Crystal, JB West, ER Weibel, PJ Barnes, eds. Philadelphia: Lippincott-Raven Publishers, 1997, pp. 905–915.

    Google Scholar 

  • Ayers M, Jeffery PK. “Cell Division and Differentiation in the Respiratory Tract.” In Cell Biology and the Lung, G Cumming, G Bonsignore, eds. New York: Plenum Press, 1982, pp. 33–60.

    Chapter  Google Scholar 

  • Baluk P, Nadel JA, Mcdonald DM. Calcitonin gene-related peptide in secretory granules of serous cells in the rat tracheal epithelium. Am. J. Respir. Cell Mol. Biol., 1993;8:446–453.

    PubMed  CAS  Google Scholar 

  • Barnes PJ. Drug-therapy - A new approach to the treatment of asthma. N. Engl. J. Med., 1989;321:1517–1527.

    Article  PubMed  CAS  Google Scholar 

  • Barnes PJ. “Neural Control of Airway Smooth Muscle.” In The Lung: Scientific Foundations, RG Crystal, JB West, ER Weibel, PJ Barnes, eds. Philadelphia: Lippincott-Raven Publishers, 1997, pp. 1269–1285.

    Google Scholar 

  • Bennett JA, Kidd C, Latif AB, McWilliam PN. A horseradish peroxidase study of vagal motoneurons with axons in cardiac and pulmonary branches of the cat and dog. Quart. J. Exp. Physiol., 1981;66:145–154.

    CAS  Google Scholar 

  • Bernard C. (ed.) An Introduction to the Study of Experimental Medicine. New York: Dover Publications, Inc., 1957.

    Google Scholar 

  • Bezdicek P, Crystal RG. “Pulmonary Macrophages.” In The Lung: Scientific Foundations, RG Crystal, JB West, ER Weibel, PJ Barnes, eds. Philadelphia: Lippincott-Raven Publishers, 1997, pp. 859–875.

    Google Scholar 

  • Bienenstock J, Johnston N, Perey DY. Bronchial lymphoid tissue. Part I. Morphologic characteristics. Lab. Invest., 1973b;28:686–692.

    CAS  Google Scholar 

  • Bienenstock J, Johnston N, Perey DY. Bronchial lymphoid tissue. Part II. Functional characterisitics. Lab. Invest., 1973a;28:693–698.

    CAS  Google Scholar 

  • Blusse van Oud Alblas A, van Furth R. Origin, kinetics, and characteristics of pulmonary macrophages in the normal steady-state. J. Exp. Med., 1979;149:1504–1518.

    Article  Google Scholar 

  • Blyth DI, Pedrick MS, Savage TJ, Bright H, Beesley JE, Sanjar S. Induction, duration, and resolution of airway goblet cell hyperplasia in a murine model of atopic asthma: Effect of concurrent infection with respiratory syncytial virus and response to dexamethasone. Am. J. Respir. Cell Mol. Biol. 1998;19:38–54.

    PubMed  CAS  Google Scholar 

  • Bogdanffy MS. Biotransformation enzymes in the rodent nasal mucosa: The value of a histochemical approach. Environ. Health Perspect., 1990;85:177–186.

    CAS  Google Scholar 

  • Bowden DH. Alveolar response to injury. Thorax, 1981;36:801–804.

    Article  PubMed  CAS  Google Scholar 

  • Bowes D, Clark AE, Corrin B. Ultrastructural localization of lactoferrin and glycoprotein in human bronchial glands. Thorax, 1981;36:108–115.

    Article  PubMed  CAS  Google Scholar 

  • Brain JD. The uptake of inhaled gases by the nose. Ann. Otol. Rhinol. Laryngol., 1970;79:529–539.

    PubMed  CAS  Google Scholar 

  • Brain JD, Gehr P, Kavet RI. Airway macrophages. The importance of the fixation method. Am Rev Respir Dis 1984;129:823–826.

    PubMed  CAS  Google Scholar 

  • Brandtzaeg P. Mucosal and glandular distribution of immunoglobulin components. Immunohistochemistry with a cold ethanol-fixation technique. Immunology, 1974;26:1101–1114.

    PubMed  CAS  Google Scholar 

  • Brandtzaeg P. “Immune Function of Human Nasal Mucosa and Tonsils in Health and Disease.” In Immunology of the Lung and Upper Respiratory Tract, J Bienenstock, ed. New York: McGraw-Hill, 1984, pp. 28–95.

    Google Scholar 

  • Breel M, Vanderende M, Sminia T, Kraal G. Subpopulations of lymphoid and non-lymphoid cells in bronchus-associated lymphoid-tissue (BALT) of the mouse. Immunology, 1988;63:657–662.

    PubMed  CAS  Google Scholar 

  • Breeze RG, Aalberse RC, Wheeldon EB. The cells of the pulmonary airways. Am. Rev. Respir. Dis., 1977;116:705–777.

    PubMed  CAS  Google Scholar 

  • Breuer R, Christensen TG, Lucey EC, Stone PJ, Snider GL. Quantitative study of secretory cell metaplasia induced by human neutrophil elastase in the large bronchi of hamsters. J. Lab. Clin. Med., 1985;105:635–640.

    PubMed  CAS  Google Scholar 

  • Brittebo EB, Eriksson C, Feil V, Bakke J, Brandt I. Toxicity of 2,6-dichlorothiobenzamide (chlorthiamid) and 2,6-dichlorobenzamide in the olfactory nasal mucosa of mice. Fundam. Appl. Toxicol., 1991;17:92–102.

    Article  CAS  Google Scholar 

  • Brody AR, Hook GE, Cameron GS, Jetten AM, Butterick CJ, Nettesheim P. The differentiation capacity of Clara cells isolated from the lungs of rabbits. Lab. Invest., 1987;57:219–229.

    CAS  Google Scholar 

  • Brokaw JJ, White GW, Baluk P, Anderson GP, Umemoto EY, McDonald DM. Glucocorticoid-induced apoptosis of dendritic cells in the rat tracheal mucosa. Am. J. Respir. Cell Mol. Biol., 1998;19:598–605.

    PubMed  CAS  Google Scholar 

  • Brownstein DG, Rebar AH, Bice DE, Muggenburg BA, Hill JO. Immunology of the lower respiratory tract. Serial morphologic changes in the lungs and tracheobronchial lymph nodes of dogs after intrapulmonary immunization with sheep erythrocytes. Am. J. Pathol., 1980;98:499–514.

    PubMed  CAS  Google Scholar 

  • Buckley LA, Jiang XZ, James RA, Morgan KT, Barrow CS. Respiratory tract lesions induced by sensory irritants at the RD50l. Pharmacol., 1984;74:417–429.

    CAS  Google Scholar 

  • Cauna N. ‘Blood and Nerve Supply of the Nasal Lining.“ In The Nose: Upper Airway Physiology and the Atmospheric Environment, DF Proctor, I Anderson, eds. Amsterdam: Elsevier Biomedical Press, 1982, pp. 45–69.

    Google Scholar 

  • Chang LY, Mercer R, Crapo RD. Differential distribution of brush cells in rat lung. Anat. Rec., 1986;216:49–54.

    Article  PubMed  CAS  Google Scholar 

  • Chang LY, Mercer RR, Stockstill BL, Miller FJ, Graham JA, Ospital JJ, Crapo JD. Effects of low levels of NO2 on terminal bronchiolar cells and its relative toxicity compared to O3. Toxicol. Appl. Pharmacol., 1988;96:451–464.

    CAS  Google Scholar 

  • Chretien J, Bignon J, Hirsch A. (eds.) The Pleura in Health and Disease. New York: Marcel Dekker, 1985.

    Google Scholar 

  • Christensen TG, Breuer R, Lucey EC, Stone PJ, Snider GL. Regional difference in airway epithelial response to neutrophil elastase: Tracheal secretory cells discharge and recover in hamsters that develop bronchial secretory-cell metaplasia. Exp. Lung Res., 1989;15:943–959.

    Article  CAS  Google Scholar 

  • Coggle JE, Tarling JD. The proliferation kinetics of pulmonary alveolar macrophages. J. Leukocyte Biol., 1984;35:317–327.

    PubMed  CAS  Google Scholar 

  • Cox G, Crossley J, Xing Z. Macrophage engulfment of apoptotic neutrophils contributes to the resolution of acute pulmonary inflammation in vivo. Am. J. Respir. Cell Mol. Biol., 1995;12:232–237.

    PubMed  CAS  Google Scholar 

  • Crapo JD, Barry BE, Foscue HA, Shelburne J. Structural and biochemical changes in rat lungs occurring during exposures to lethal and adaptive doses of oxygen. Am. Rev. Respir. Dis., 1980;122:123–143.

    PubMed  CAS  Google Scholar 

  • Crapo JD, Young SL, Fram EK, Pinkerton KB, Barry BE, Crapo RO. Morphometric characteristics of cells in the alveolar region of mammalian lungs. Am. Rev. Respir, Dis., 1983;128:542-S46.

    Google Scholar 

  • Cutz E, Conen PE. Ultrastructure and cytochemistry of Clara cells. Am. J. Pathol., 1971;62:127–141.

    CAS  Google Scholar 

  • Dahl AR, Hadley WM. Nasal cavity enzymes involved in xenobiotic metabolism: Effects on the toxicity of inhalants. CRC Crit. Rev. Toxicol., 1991;21:345–372.

    Article  CAS  Google Scholar 

  • Davis C, Kannan MS, Jones TR, Daniel EE. Control of human airway smooth muscle: In vitro studies. J. Appl. Physiol., 1982;53:1080–1087.

    PubMed  CAS  Google Scholar 

  • Devereux TR, Domin BA, Philpot RM. Xenobiotic metabolism by isolated pulmonary cells. Pharmacol. Ther., 1989;41:243–256.

    CAS  Google Scholar 

  • DeWater R, Willems LNA, van Muijen GNP, Franken C, Fransen JAM, Dijkman JH, Kramps JA. Ultrastructural localization of bronchial antileukoprotease in central and peripheral human airways by a gold-labeling technique using monoclonal antibodies. Am. Rev. Respir. Dis., 1986;133:882–890.

    CAS  Google Scholar 

  • Dohrman A, Tsuda T, Escudier E, Cardone M, Jany B, Gum J, Kim Y, Basbaum C. Distribution of lysozyme and mucin (MUC2 and MUC3) mRNA in human bronchus. Exp. Lung Res., 1994;20:367–380.

    Article  CAS  Google Scholar 

  • Doidge JM, Satchel! DG. Adrenergic and non-adrenergic inhibitory nerves in mammalian airways. J. Auton. Nerv. Syst., 1982;5:83–99.

    Article  CAS  Google Scholar 

  • Dunnill MD, Massarella GR, Arderson JA. A comparison of the quantitative anatomy of the bronchi in normal subjects, in status asthmaticus, in chronic bronchitis, and in emphysema. Thorax, 1969;24:176–179.

    Article  PubMed  CAS  Google Scholar 

  • Eccles R. “Neurological and Pharmacological Considerations.” In The Nose: Upper Airway Physiology and the Atmospheric Environment, DF Proctor, IB Anderson, eds. Amsterdam: Elsevier Biomedical Press, 1982, pp. 191–214.

    Google Scholar 

  • Engelhardt JF, Yankaskas JR, Ernst SA, Yang Y, Marino CR, Boucher RC, Cohn JA, Wilson JM. Submucosal glands are the predominant site of CFIR expression in the human bronchus. Nat. Genet., 1992;2:240–248.

    CAS  Google Scholar 

  • Evans MJ, Cox RA, Shami SG, Wilson B, Plopper CG. The role of basal cells in attachment of columnar cells to the basal lamina of the trachea. Am. J. Respir. Cell Mol. Biol., 1989;1:463–469.

    PubMed  CAS  Google Scholar 

  • Evans MJ, Johnson LV, Stephens RJ, Freeman G. Renewal of the terminal bronchiolar epithelium in the rat following exposure to NO2 or O3. Lab. Invest., 1976;35:246–257.

    CAS  Google Scholar 

  • Fox B, Bull TB, Guz A. Mast cells in the human alveolar wall - an electron-microscopic study. J. Clin. Path., 1981;34:1333–1342.

    Article  PubMed  CAS  Google Scholar 

  • Geelhaar A, Weibel ER. Morphometric estimation of pulmonary diffusion capacity. 3. The effect of increased oxygen consumption in Japanese Waltzing mice. Respir. Physiol., 1971;11:354–366.

    Article  CAS  Google Scholar 

  • Gehr P, Bachofen M, Weibel ER. The normal human lung: Ultrastructure and morphometric estimation of diffusion capacity. Respir. Physiol., 1978;32:121–140.

    Article  CAS  Google Scholar 

  • Genter MB, Llorens J, O’Callaghan JP, Peele DB, Morgan KT, Crofton KM. Olfactory toxicity of 13,13’iminodipropionitrile in the rat. J. Pharmacol. Exp. Ther., 1992;263:1432–1429.

    PubMed  CAS  Google Scholar 

  • Gilljam H, Motakefi AM, Robertson B, Strandvik B. Ultrastructure of the bronchial epithelium in adult patients with cystic fibrosis. Eur J Respir Dis 1987;71:187–194.

    PubMed  CAS  Google Scholar 

  • Graziadei PPC, Monti-Graziadei GA. “Continuous Nerve Cell Renewal in the Olfactory System.” In Handbook of Sensory Physiology, M Jacobson, ed. New York: Springer-Verlag, 1977, pp. 55–82.

    Google Scholar 

  • Gregson RL, Davey MJ, Prentice DE. Bronchus-associated lymphoid tissue (BALT) in the laboratory-bred and wild rat, Rattus norvegicus. Lab. Anim., 1979;13:239–243.

    Article  PubMed  CAS  Google Scholar 

  • Gross EA, Swenberg JA, Fields S, Popp JA. Comparative morphometry of the nasal cavity in rats and mice. J. Anat., 1982;135:83–88.

    PubMed  CAS  Google Scholar 

  • Guerzon GM, Pare PD, Michoud MC, Hogg JC. Number and distribution of mast cells in monkey lungs. Am. Rev. Respir. Dis., 1979;119:59–66.

    CAS  Google Scholar 

  • Guilmette RA, Wicks JD, Wolff RK. Morphometry of human nasal airways in vivo using magnetic resonance imaging. J. Aerosol Med., 1989;2:365–377.

    Article  Google Scholar 

  • Haley PJ. “Immunological Responses Within the Lung After Inhalation of Airborne Chemicals.” In Toxicology of the Lung, 2 Edition, DE Gardner, JD Crapo, RO McClellan, eds. New York: Raven Press, 1993, pp. 389–416.

    Google Scholar 

  • Harkema JR. Comparative aspects of nasal airway anatomy: Relevance to inhalation toxicology. Toxicol. Pathol., 1991;19:321–336.

    CAS  Google Scholar 

  • Harkema JR, Hotchkiss JA. In vivo effects of endotoxin on intraepithelial mucosubstances in rat pulmonary airways. Quantitative histochemistry. Am. J. Pathol., 1992;141:307–317.

    PubMed  CAS  Google Scholar 

  • Harkema JR, Hotchkiss JA, Barr EB, Bennett CB, Gallup M, Lee JK, Basbaum C. Long-lasting effects of chronic ozone exposure on rat nasal epithelium. Am. J. Respir. Cell Mol. Biol., 1998;19:1–13.

    Google Scholar 

  • Harkema JR, Hotchkiss JA, Harmsen AG, Henderson RF. In vivo effects of transient neutrophil influx on nasal respiratory epithelial mucosubstances. Quantitative histochemistry. Am. J. Pathol., 1988;130:605–615.

    PubMed  CAS  Google Scholar 

  • Harkema JR, Hotchkiss JA, Henderson RF. Effects of 0.12 and 0.80 ppm ozone on rat nasal and nasopharyngeal epithelial mucosubstances: Quantitative histochemistry. Toxicol. Pathol., 1989;17:525–535.

    CAS  Google Scholar 

  • Harkema JR, Mariassy A, St.George JA, Hyde DM, Plopper CG. “Epithelial Cells of the Conducting Airways: A Species Comparison.” In The Airway Epithelium: Physiology, Pathophysiology, and Pharmacology, SG Farmer, DW Hay, eds. New York: Marcel Dekker, Inc., 1991, pp. 3–39.

    Google Scholar 

  • Harkema JR, Plopper CG, Hyde DM, St.George JA, Dungworth DL. Effects of an ambient level of ozone on primate nasal epithelial mucosubstances. Quantitative histochemistry. Am. J. Pathol., 1987;127:90–96.

    PubMed  CAS  Google Scholar 

  • Harkema JR, Plopper CG, Hyde DM, Wilson DW, St.George JA, Wong VJ. Nonolfactory surface epithelium of the nasal cavity of the bonnet monkey: A morphologic and morphometric study of the transitional and respiratory epithelium. Am. J. Anat., 1987;180:266–279.

    Article  PubMed  CAS  Google Scholar 

  • Harmsen AG, Muggenburg BA, Snipes MB, Bice DE. The role of macrophages in particle translocation from lungs to lymph nodes. Science, 1985;230:1277–1280.

    Article  PubMed  CAS  Google Scholar 

  • Heritage PL, Underdown BJ, Arsenault AL, Snider DP, McDermott MR. Comparison of murine nasal-associated lymphoid tissue and Peyer’s patches. Am. J. Respir. Crit. Care Med., 1997;156:1256–1262.

    PubMed  CAS  Google Scholar 

  • Hogg JC. Neutrophil kinetics and lung injury. Physiol. Rev. 1987;67:1249–1295.

    CAS  Google Scholar 

  • Holland SM, Gallin JI. “Neutrophils.” In The Lung: Scientific Foundations, RG Crystal, JB West, ER Weibel, PJ Barnes, eds. Philadelphia: Lippincott-Raven Publishers, 1997, pp. 877–890.

    Google Scholar 

  • Holt PG. “Macrophage and Dendritic Cell Populations in the Respiratory Tract.” In Immunopharmacology of the Respiratory System, ST Holgate, ed. London: Academic Press, 1995, pp. 1–12.

    Chapter  Google Scholar 

  • Inayama Y, Hook GE, Brody AR, Jetten AM, Gray T, Mahler J, Nettesheim P. In vitro and in vivo growth and differentiation of clones of tracheal basal cells. Am. J. Pathol., 1989;134:539–549.

    PubMed  CAS  Google Scholar 

  • Jarkovska D. Ultrastructure of the epithelium of the respiratory bronchioles in man. Folia Morphol. Praha, 1970;18:352–358.

    CAS  Google Scholar 

  • Jeffery PK. “Structural, Immunologic, and Neural Elements of the Normal Human Airway Wall.” In Asthma and Rhinitis, WW Busse, ST Holgate, eds. Oxford: Blackwell Scientific Publications, 1995, pp. 80–106.

    Google Scholar 

  • Jeffery PK, Reid L. New observations of rat airway epithelium: A quantitative and electron microscopic study. J. Anat., 1975;120:295–320.

    PubMed  CAS  Google Scholar 

  • Joad JP, Ji C, Kott KS, Bric JM, Pinkerton KE. In utero and postnatal effects of sidestream cigarette smoke exposure on lung function, hyperresponsiveness, and neuroendocrine cells in rats. Toxicol. Appl. Pharmacol., 1995;132:63–71.

    CAS  Google Scholar 

  • Johnson NF, Hubbs AF. Epithelial progenitor cells in the rat trachea. Am. J. Respir. Cell Mol. Biol., 1990;3:579–585.

    PubMed  CAS  Google Scholar 

  • Kahane JC. A morphological study of the human prepubertal and pubertal larynx. Am. J. Anat., 1978;151:11–19.

    Article  CAS  Google Scholar 

  • Kay IM. Comparative morphologic features of the pulmonary vasculature in mammals. Am. Rev. Respir. Dis., 1983;128:S53–S57.

    PubMed  CAS  Google Scholar 

  • Klaassen AB, Kuijpers W, Denuce JM. Morphological and histochemical aspects of the nasal glands in the rat. Anat. Anz., 1981;149:51–63.

    PubMed  CAS  Google Scholar 

  • Koornstra PJ, Duijvestijn AM, Vlek LF, Marres EH, van Breda Vriesman Pi. Immunohistochemistry of nasopharyngeal (Waldeyer’s ring equivalent) lymphoid tissue in the rat. Acta Otolaryngol. Stockh., 1993;113:660–667.

    Article  CAS  Google Scholar 

  • Kraal G, Broug E, van Iwaarden JF, Persoons JHA, Thepen T. “The Role of Alveolar Macrophages in Pulmonary Immune Function.” In Lung Macrophages and Dendritic Cells in Health and Disease, MF Lipscomb, SW Russell, eds. New York: Marcel Dekker, Inc., 1997, pp. 203–220.

    Google Scholar 

  • Kunkel SL, Chensue SW, Lucas NW, Strieter RM. “Macrophage-Derived Cytokines in Lung Inflammation.” In Lung Macrophages and Dendritic Cells in Health and Disease, MF Lipscomb, SW Russell, eds. New York: Marcel Dekker, Inc., 1997, pp. 183–202.

    Google Scholar 

  • Kuper CF, Hameleers DM, Bruijntjes JP, van der Ven I, Biewenga J, Sminia T. Lymphoid and non-lymphoid cells in nasal-associated lymphoid tissue (NALT) in the rat. An immuno-and enzymehistochemical study. Cell Tissue Res., 1990;259:371–377.

    Article  PubMed  CAS  Google Scholar 

  • Lamb D, Reid L. Mitotic rates, goblet cell increase and histochemical changes in mucus in rat bronchial epithelium during exposure to sulphur dioxide. J. Pathol. Bacteriol., 1968;96:97–111.

    Article  PubMed  CAS  Google Scholar 

  • Lambrecht BN, Carro-Muino I, Vermaelen K, Pauwels RA. Allergen-induced changes in bone marrow progenitor and airway dendritic cells in sensitized rats. Am. J. Respir. Cell Mol. Biol., 1999;20:1165–1174.

    PubMed  CAS  Google Scholar 

  • Lauweryns JM. The juxta-alveolar lymphatics in the human adult lung. Histologic studies in 15 cases of drowning. Am. Rev. Respir. Dis., 1970;102:877–885.

    PubMed  CAS  Google Scholar 

  • Lauweryns JM, van Lommel A. The intrapulmonary neuroepithelial bodies after vagotomy: Demonstration of their sensory neuroreceptor-like innervation. Experientia, 1983;39:1123–1124.

    Article  PubMed  CAS  Google Scholar 

  • Leak LV, Ferrans VJ. “Lymphatics and Lymphoid Tissue.” In The Lung: Scientific Foundations, RG Crystal, JB West, ER Weibel, PJ Barnes, eds. Philadelphia: Lippincott-Raven Publishers, 1997, pp. 1129–1137.

    Google Scholar 

  • Leak LV, Jamuar MP. Ultrastructure of pulmonary lymphatic vessels. Am. Rev. Respir. Dis., 1983;128:559-S65.

    Google Scholar 

  • Lee RMK, Forrest JB. “Structure and Function of Cilia.” In The Lung: Scientific Foundations, RG Crystal, JB West, ER Weibel, PJ Barnes, eds. Philadelphia: Lippincott-Raven Publishers, 1997, pp. 459–478.

    Google Scholar 

  • Lipscomb MF, Russell SW. (eds.) Lung Macrophages and Dendritic Cells in Health and Disease. New York: Marcel Dekker, Inc., 1997.

    Google Scholar 

  • Liu JY, Nettesheim P, Randell SH. Growth and differentiation of tracheal epithelial progenitor cells. Am. J. Physiol., 1994;266:L296–L307.

    CAS  Google Scholar 

  • Lubman RL, Kim KJ, Crandall ED. “Alveolar Epithelial Barriers Proteins.” In The Lung: Scientific Foundations, RG Crystal, JB Went, ER Weibel, PJ Barnes, eds. Philadelphia: Lipincott-Raven Publishers, 1997, pp. 585–602.

    Google Scholar 

  • Mariassy AT, Wheeldon EB. The pleura: A combined light microscopic, scanning, and transmission electron microscopic study in the sheep. Part I. Normal pleura. Exp. Lung Res., 1983;4:293–314.

    Article  PubMed  CAS  Google Scholar 

  • Matulionis DH, Parks HF. Ultrastructural morphology of the normal nasal respiratory epithelium of the mouse. Anat. Rec., 1973;176:64–83.

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin R, Tyler W, Canada R. A study of the subgross pulmonary anatomy in various mammals. Am. J. Anat., 1961;108:149–165.

    Article  Google Scholar 

  • Mc William AS, Napoli S, Marsh AM, Pemper FL, Nelson DJ, Pimm CL, Stumbles PA, Wells TNC, Holt PG. Dendritic cells are recruited into the airway epithelium during the inflammatory response to a broad spectrum of stimuli. J. Exp. Med., 1996;184:2429–2432.

    Article  CAS  Google Scholar 

  • Mercer RR, Crapo JD. “Architecture of the Lung.” In Comparative Biology of the Normal Lung, RA Parent, ed. Boca Raton, FL: CRC Press, 1992, pp. 109–119.

    Google Scholar 

  • Mercer R, Crapo JD. “Anatomical Modeling of Microdosimetry of Inhaled Particles and Gases in the Lung.” In Extrapolation of Dosimetric Relationships for Inhaled Particles and Gases, JD Crapo, ED Smolko, FJ Miller, JA Graham, AW Hayes, eds. New York: Academic Press, 1989, pp. 69–78.

    Google Scholar 

  • Meuwissen HJ, Hussain M. Bronchus-associated lymphoid tissue in human lung: Correlation of hyperplasia with chronic pulmonary disease. Clin. Immunol. Immunopathol., 1982;23:548–561.

    Article  CAS  Google Scholar 

  • Meyrick B, Reid L. The alveolar brush cell in rat lung - a third pneumonocyte. J. Ultrastruct. Res., 1968;23:71–80.

    Article  PubMed  CAS  Google Scholar 

  • Meyrick B, Reid L. Ultrastructure of cells in the human bronchial submucosal glands. J. Anat., 1970;107:281–299.

    PubMed  CAS  Google Scholar 

  • Miller FJ. (ed.) Nasal Toxicology and Dosimetry of Inhaled Xenobiotics: Implications for Human Health. Washington, DC: Taylor & Francis, 1995.

    Google Scholar 

  • Monteiro Riviere NA, Popp JA. Ultrastructural characterization of the nasal respiratory epithelium in the rat. Am. J. Anat., 1984;169:31–43.

    Article  PubMed  CAS  Google Scholar 

  • Morgan KT, Jiang XZ, Patterson DL, Gross EA. The nasal mucociliary apparatus. Correlation of structure and function in the rat. Am. Rev. Respir. Dis., 1984;130:275–281.

    PubMed  CAS  Google Scholar 

  • Morgan KT, Patterson DL, Gross EA. Responses of the nasal mucociliary apparatus of F-344 rats to formaldehyde gas. Toxicol. Appl. Pharmacol., 1986;82:1–13.

    CAS  Google Scholar 

  • Morris JB, Hassett DN, Blanchard KT. A physiologically-based pharmacokinetic model for nasal uptake and metabolism of nonreactive vapors. Toxicol. Appl. Pharmacol., 1993;123:120–129.

    CAS  Google Scholar 

  • Murray MJ, Driscoll KE. “Immunology of the Respiratory System.” In Comparative Biology of the Normal Lung, RA Parent, ed. Boca Raton, FL: CRC Press, 1992, pp. 725–746.

    Google Scholar 

  • Nakano T, Muto H. The transitional zone in the epithelium lining the mouse epiglottis. Acta Anat. Basel, 1987;130:285–290.

    Article  CAS  Google Scholar 

  • Negus VE. (ed.) Comparative Anatomy and Physiology of the Nose and Paranasal Sinuses. Edinburgh: E&S Livingstone, 1958.

    Google Scholar 

  • Negus VE. (ed.) The Comparative Anatomy and Physiology of the Larynx. London: Hafner, 1962.

    Google Scholar 

  • Nettesheim P, Jetten AM, Inayama Y, Brody AR, George MA, Gilmore LB, Gray T, Hook GE. Pathways of differentiation of airway epithelial cells. Environ. Health Perspect., 1990;85:317–329.

    Article  PubMed  CAS  Google Scholar 

  • Nikula KJ, Wilson DW, Gin SN, Plopper CG, Dungworth DL. The response of the rat tracheal epithelium to ozone exposure. Injury, adaptation, and repair. Am. J. Pathol., 1988;131:373–384.

    PubMed  CAS  Google Scholar 

  • Nylen ES, Becker KL, Joshi PA, Snider RH, Schuller HM. Pulmonary bombesin and calcitonin in hamsters during exposure to hyperoxia and diethylnitrosamine. Am. J. Respir. Cell Mol. Biol., 1990;2:25–31.

    PubMed  CAS  Google Scholar 

  • Olsson P, Bende M. Sympathetic neurogenic control of blood flow in human nasal mucosa. Acta Otolaryngol. Stockh., 1986;102:482–487.

    Article  CAS  Google Scholar 

  • Pabst R, Gehrke I. Is the bronchus-associated lymphoid tissue (BALT) an integral structure of the lung in normal mammals, including humans? Am. J. Respir. Cell Mol. Biol., 1990;3:131–135.

    CAS  Google Scholar 

  • Parent RA (ed.) Comparative Biology of the Normal Lung. Boca Raton, FL: CRC Press, Inc., 1992. Pattle RE. Surface lining of the lung aveoli. Physiol. Rev., 1965;45:48–79.

    Google Scholar 

  • Pavelka M, Ronge HR, Stockinger G. [Comparative study of tracheal epithelium of different mammals] Vergleichende Untersuchungen am Trachealepithel verschiedener Sauger. Acta Anat. Basel, 1976;94:262–282.

    Article  CAS  Google Scholar 

  • Peters-Golden M. “Lipid Mediator Synthesis by Lung Macrophages.” In Lung Macrophages and Dendritic Cells in Health and Disease, MF Lipscomb, SW Russell, eds. New York: Marcel Dekker, Inc., 1997, pp. 151–182.

    Google Scholar 

  • Pinkerton KE, Barry BE, O’Neil JJ, Raub JA, Pratt PC, Crapo JD. Morphologic changes in the lung during the lifespan of Fischer 344 rats. Am. J. Anat., 1982;164:155–174.

    Article  PubMed  CAS  Google Scholar 

  • Pinkerton KE, Gehr E, Crapo JD. “Architecture and Cellular Composition of the Air-Blood Barrier.” In Comparative Biology of the Normal Lung, RA Parent, ed. Boca Raton, FL: CRC Press, 1992, pp. 121–128.

    Google Scholar 

  • Pinkerton KE, Plopper CG, Hyde DM, Harkema JR, Tyler WS, Morgan KT, St.George JA, Kay M, Mariassy AT. “Structure and Fuction of the Respiratory Tract.” In Handbook of Human Toxicology, EJ Massarro, ed. Boca Raton, FL: CRC Press, 1997, pp. 469–491.

    Google Scholar 

  • Plesch BE. Histology and immunohistochemistry of bronchus-associated lymphoid tissue (BALT) in the rat. Adv. Exp. Med. Biol., 1982;149:491–497.

    CAS  Google Scholar 

  • Plopper CG. Comparative morphologic features of bronchiolar epithelial cells. The Clara cell. Am. Rev. Respir. Dis., 1983;128:S37–S41.

    PubMed  CAS  Google Scholar 

  • Plopper CG, Dungworth DL. “Structure, Function, Cell Injury and Cell Renewal of Bronchiolar and Alveolar Epithelium.” In Lung Carcinoma, EM McDowell, ed. London: Churchill-Livingstone, 1987, pp. 29–44.

    Google Scholar 

  • Plopper CG, Heidsiek JG, Weir AJ, George JA, Hyde DM. Tracheobronchial epithelium in the adult rhesus monkey: A quantitative histochemical and ultrastructural study. Am. J. Anat., 1989;184:31–40.

    Article  PubMed  CAS  Google Scholar 

  • Plopper CG, Hyde DM. “Epithelial Cells of Bronchioles.” In Comparative Biology of the Normal Lung, RA Parent, ed. Boca Raton, FL: CRC Press, 1992, pp. 85–92.

    Google Scholar 

  • Plopper CG, Weir AJ, George JA, Tyler NK, Mariassy A, Wilson D, Nishio SJ, Cranz DL, Heidsiek JG, Hyde DM. “Species Differences in Airway Cell Distribution and Morphology.” In Extrapolation of Dosimetric Relationships for Inhaled Particles and Gases, JD Crapo, ED Smolko, FJ Miller, JA Graham, AW Hayes, eds. New York: Academic Press, Inc., 1989, pp. 19–34.

    Google Scholar 

  • Plowman PN. The pulmonary macrophage population of human smokers. Ann. Occup. Hyg., 1982;25:393–405.

    Article  PubMed  CAS  Google Scholar 

  • Popp JA, Martin JT. Surface topography and distribution of cell types in the rat nasal respiratory epithelium: Scanning electron microscopic observations. Am. J. Anat., 1984;169:425–436.

    Article  PubMed  CAS  Google Scholar 

  • Proctor DF, Chang JCF. “Comparative Anatomy and Physiology of the Nasal Cavity.” In Nasal Tumors in Animals and Man, G Reznik, S Stinson, eds. Boca Raton, FL: CRC Press, 1983, pp. 1–33.

    Google Scholar 

  • Reid LM. Pathology of chronic bronchitis. Lancet, 1954;1:275–276.

    Article  Google Scholar 

  • Richardson JB. Recent progress in pulmonary innervation. Am. Rev. Respir. Dis., 1983;128:S65–S68.

    PubMed  CAS  Google Scholar 

  • Richardson JB, Beland J. Nonadrenergic inhibitory nervous system in human airways. J. Appl. Physiol., 1976;41:764–771.

    PubMed  CAS  Google Scholar 

  • Richeldi L, Franchi A, Rovatti E, Cossarizza A, du Bois RM, Saltini C. “Lymphocytes.” In The Lung: Scientific Foundations, RG Crystal, JB Went, ER Weibel, RI Barnes, eds. Philadelphia: Lippincott-Raven Publishers, 1997, pp. 803–820.

    Google Scholar 

  • Richmond I, Pritchard GE, Ashcroft T, Avery A, Corns PA, Walters EH. Bronchus-associated lymphoid tissue (BALT) in human lung: Its distribution in smokers and non-smokers. Thorax, 1993;48:1130–1134.

    Article  PubMed  CAS  Google Scholar 

  • Rogers AV, Dewar A, Corrin B, Jeffery PK. Identification of serous-like cells in the surface epithelium of human bronchioles. Eur. Respir. J., 1993;6:498–504.

    PubMed  CAS  Google Scholar 

  • Sannes PL. Differences in basement membrane-associated microdomains of type I and type II pneumocytes in the rat and rabbit lung. J. Histochem. Cytochem., 1984;32:827–833.

    Article  PubMed  CAS  Google Scholar 

  • Sasaki J, Watanabe S, Nomura T, Wada T, Tanaka Y, Kanda S, Otsuka N. Presence of filaments in the non-ciliated bronchiolar epithelial (Clara) cell of mammalian lung. Okajimas Folia Anat. Japan, 1988;65:155–169.

    CAS  Google Scholar 

  • Schlesinger RB, Gorczynski JE, Dennison J, Richards L, Kinney PL, Bosland MC. Long-term intermittent exposure to sulfuric acid aerosol, ozone, and their combination: Alterations in tracheobronchial mucociliary clearance and epithelial secretory cells. Exp. Lung Res., 1992;18:505–534.

    Article  CAS  Google Scholar 

  • Schlesinger RB, Lippmann M. Particle deposition in the trachea: In vivo and in hollow casts. Thorax, 1976;31:678–684.

    Article  PubMed  CAS  Google Scholar 

  • Schreider JP, Raabe OG. Anatomy of the nasal-pharyngeal airway of experimental animals. Anat. Rec., 1981;200:195–205.

    CAS  Google Scholar 

  • Schuller HM, Becker KL, Witschi HP. An animal model for neuroendocrine lung cancer. Carcinogenesis, 1988;9:293–296.

    Article  PubMed  CAS  Google Scholar 

  • Serabjit-Singh CJ, Nishio SJ, Philpot RM, Plopper CG. The distribution of cytochrome P450 monooxygenase in cells of the rabbit lung: An ultrastructural immunocytochemical characterization. Mol. Pharmacol., 1988;33:279–289.

    CAS  Google Scholar 

  • Sheppard MN, Johnson NF, Cole GA, Bloom SR, Marangos PJ, Polak JM. Neuron specific enolase (NSE) immunostaining detection of endocrine cell hyperplasia in adult rats exposed to asbestos. Histochemistry, 1982;74:505–513.

    Article  PubMed  CAS  Google Scholar 

  • Silverman ES, Gerritsen ME, Collins T. “Metabolic Functions of the Pulmonary Endothelium.” In The Lung: Scientific Foundations, RG Crystal, JB West, ER Weibel, PJ Barnes, eds. Philadelphia: Lippincott-Raven Publishers, 1997, pp. 629–651.

    Google Scholar 

  • Singh G, Katyal SL. “Secretory Proteins of Clara Cells and Type Il Cells.” In Comparative Biology of the Normal Lung, RA Parent, ed. Boca Raton, FL: CRC Press, 1992, pp. 93–108.

    Google Scholar 

  • Singh G, Katyal SL, Brown WE, Phillips S, Kennedy AL, Anthony J, Squeglia N. Amino-acid and cDNA nucleotide sequences of human Clara cell 10 kDa protein. Biochim. Biophys. Acta, 1988;950:329–337.

    Article  CAS  Google Scholar 

  • Sleigh MA, Blanchard JD, Liron M. The propulsion of mucus by cilia. Am. Rev. Respir. Dis., 1988;137:726–731.

    PubMed  CAS  Google Scholar 

  • Sorokin SP. “The Respiratory System.” In Cell and Tissue Biology: A Textbook of Histology, L Weiss, ed. Baltimore: Urban & Schwarzenberg, Inc., 1988, pp. 751–814.

    Google Scholar 

  • Sorokin SP, Hoyt-RF J, Pearsall AD. Comparative biology of small granule cells and neuroepithelial bodies in the respiratory system. Short review. Am. Rev. Respir. Dis., 1983;128:S26–S31.

    PubMed  CAS  Google Scholar 

  • Spicer SS, Chakrin LW, Wardell J Jr., Kendrick W. Histochemistry of mucosubstances in the canine and human respiratory tract. Lab. Invest., 1971;25:483–490.

    PubMed  CAS  Google Scholar 

  • Spit BJ, Hendriksen EG, Bruijntjes JP, Kuper CF. Nasal lymphoid tissue in the rat. Cell Tissue Res 1989;255:193–198.

    Article  PubMed  CAS  Google Scholar 

  • St.George JA, Nishio SJ, Plopper CG. Carbohydrate cytochemistry of rhesus monkey tracheal epithelium. Anat. Rec., 1984;210:293–302.

    Article  PubMed  CAS  Google Scholar 

  • Stevens TP, McBride JT, Peake JL, Pinkerton KE, Stripp BR. Cell proliferation contributes to PNEC hyperplasia after acute airway injury. Am. J. Physiol., 1997;272:L486–L493.

    PubMed  CAS  Google Scholar 

  • Storey WF, Staub NC. Ventilation of terminal air units. J. Appl. Physiol., 1962;17:3–91.

    Google Scholar 

  • Suda T, McCarthy K, Vu Q, McCormack J, Schneeberger EE. Dendritic cell precursors are enriched in the vascular compartment of the lung. Am. J. Respir. Cell Mol. Biol., 1998;19:728–737.

    PubMed  CAS  Google Scholar 

  • Takeyama K, Dabbagh K, Lee HM, Agusti C, Lausier JA, Ueki IF, Grattan KM, Nadel JA. Epidermal growth factor system regulates mucin production in airways. Proc. Natl. Acad. Sci., USA, 1999;96:3081–3086.

    Article  PubMed  CAS  Google Scholar 

  • Tateishi R. Distribution of argyrophil cells in adult human lungs. Arch. Pathol., 1973;96:198–202.

    PubMed  CAS  Google Scholar 

  • Tsutsumi Y, Osamura RY, Watanabe K, Yanaihara N. Immunohistochemical studies on gastrin-releasing peptide-and adrenocorticotropic hormone-containing cells in the human lung. Lab. Invest., 1983;48:623–632.

    PubMed  CAS  Google Scholar 

  • Tyler NK, Plopper CG. Morphology of the distal conducting airways in rhesus monkey lungs. Anat. Rec., 1985;211:295–303.

    CAS  Google Scholar 

  • Tyler WS. Small airways and terminal units: Comparative subgross anatomy of lungs. Am. Rev. Respir. Dis., 1983;128:532-S36.

    Google Scholar 

  • Tyler WS, Coalson JJ, Stripp B. Comparative biology of the lung. Am Rev Respir Dis 1983;128:51-S91.

    Google Scholar 

  • Tyler WS, Julian MD. “Gross and Subgross Anatomy of Lungs, Pleura, Connective Tissue Septa, Distal Airways, and Structural Units.” In Comparative Biology of the Normal Lung, RA Parent, ed. Boca Raton, FL: CRC Press, 1992, pp. 37–48.

    Google Scholar 

  • van Haarst JM, de Wit HJ, Drexhage HA, Hoogsteden HC. Distribution and immunophenotype of mononuclear phagocytes and dendritic cells in the human lung. Am. J. Respir. Cell Mol. Biol., 1994;10:487–492.

    PubMed  Google Scholar 

  • van Voorhis WC, HAIR LS, Steinman RM, Kaplan G. Human dendritic cells - Enrichment and characterization from peripheral blood. J. Exp. Med., 1982;155:1172–1187.

    Article  PubMed  Google Scholar 

  • Warner AE, Brain JD. The cell biology and pathogenic role of pulmonary intravascular macrophages. Am. J. Physiol., 1990;258:L1–L12.

    CAS  Google Scholar 

  • Weibel ER. (ed.) Morphometry of the Human Lung. New York: Academic Press, 1963.

    Google Scholar 

  • Weibel ER, Bachofen H. “The Fiber Scaffold of Lung Parenchyma.” In The Lung: Scientific Foundations, RG Crystal, JB West, ER Weibel, PJ Barnes, eds. Philadelphia: Lippincott-Raven Publishers, 1997, pp. 1139–1146.

    Google Scholar 

  • Weibel ER, Crystal RG. “Structural Organization of the Pulmonary Interstitium.” In The Lung: Scientific Foundations, RG Crystal, JB West, ER Weibel, PJ Barnes, eds. Philadelphia: Lippincott-Raven Publishers, 1997, pp. 685–695.

    Google Scholar 

  • Weibel ER, Gil J. “Structure-Function Relationships at the Alveolar Level.” In Bioengineering Aspects of the Lung, JB West, ed. New York: Marcel Dekker, 1977, pp. 1–81.

    Google Scholar 

  • Weibel ER, Taylor CR. “Functional Design of the Human Lung for Gas Exchange.” In Fishman’s Pulmonary Diseases and Disorders, 3rd Edition, AP Fishman, ed. New York: McGraw-Hill, 1998, pp. 21–71.

    Google Scholar 

  • Wharton J, Polak JM, Bloom SR, Ghatei MA, Solcia E, Brown MR, Pearse AG. Bombesin-like immunoreactivity in the lung. Nature, 1978;273:769–770.

    Article  PubMed  CAS  Google Scholar 

  • Wharton J, Polak JM, Cole GA, Marangos PJ, Pearse AG. Neuron-specific enolase as an immunocytochemical marker for the diffuse neuroendocrine system in human fetal lung. J. Histochem. Cytochem., 1981;29:1359–1364.

    Article  PubMed  CAS  Google Scholar 

  • Widdicombe JG, Pack RJ. The Clara cell. Eur. J. Respir. Dis., 1982;63:202–220.

    CAS  Google Scholar 

  • Willems LN, Kramps JA, Stijnen T, Sterk PJ, Weening JJ, Dijkman JH. Antileukoprotease-containing bronchiolar cells. Relationship with morphologic disease of small airways and parenchyma. Am. Rev. Respir. Dis., 1989;139:1244–1250.

    PubMed  CAS  Google Scholar 

  • Yamamoto T, Masuda H. Some observations on the fine structure of the goblet cells in the nasal respiratory epithelium of the rat, with special reference to the well-developed agranular endoplasmic reticulum. Okajimas Folia Anat. Japan, 1982;58:583–594.

    CAS  Google Scholar 

  • Yeh HC, Schum GM. Models of human lung airways and their application to inhaled particle deposition. Bull. Math. Biol., 1980;42:461–480.

    PubMed  CAS  Google Scholar 

  • Young SL, Fram EK, Randell SH. Quantitative three-dimensional reconstruction and carbohydrate cytochemistry of rat non-ciliated bronchiolar (Clara) cells. Am. Rev. Respir. Dis., 1986;133:899–907.

    PubMed  CAS  Google Scholar 

  • Zorychta E, Richardson JB. “Innervation of the Lung.” In Comparative Biology of the Normal Lung, RA Parent, ed. Boca Raton, FL: CRC Press, 1991, pp. 157–161.

    Google Scholar 

  • Zrunek M, Happak W, Hermann M, Streinzer W. Comparative anatomy of human and sheep laryngeal skeleton. Acta Otolaryngol. Stockh., 1988;105:155–162.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Harkema, J.R., Plopper, C.G., Pinkerton, K.E. (2000). Comparative Structure of the Respiratory Tract: Airway Architecture in Humans and Animals. In: Cohen, M.D., Zelikoff, J.T., Schlesinger, R.B. (eds) Pulmonary Immunotoxicology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4535-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4535-4_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7046-8

  • Online ISBN: 978-1-4615-4535-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics