Skip to main content

AXON Terminal Hyperexcitability Seen in Epileptogenesis In Vitro

  • Chapter
Ion Channels

Part of the book series: Ion Channels ((IC))

Abstract

In the study of epilepsy, a great deal of attention has been devoted to synaptic mechanisms of seizure induction and expression. Many efforts have focused on understanding changes in the balance between synpatic excitation and inhibition. For example, the application of a number of excitatory amino acids can evoke epileptiform activity (Lehman et al., 1987; McCaslin and Morgan, 1986;. Meldrum, 1986; Piredda and Gale, 1986; Turski et al., 1987a,b), and, conversely, antagonists of excitatory amino acid receptors can suppress seizures or seizurelike activity in some models (Czuczwar et al., 1985; Czuczwar and Meldrum, 1982; De Sarro et al., 1985; Heinemann et al., 1985; Lehman et al., 1987; McNamara et al., 1988; Meldrum, 1986; Sagratella et al., 1987; Traynelis and Dingledine, 1988; Turski et al., 1987a; Walther et al., 1986). Changes in responses to excitatory amino acids are associated with pathological neuroplasticity and accompany both in vivo kindling and similar in vitro stimulation models of epileptogenesis (Mody et al., 1988; Stelzer et al., ss1987). In addition to altering the receptor mediation of synaptic responses, excitation within a neural network may be increased by altering the frequency and probability of synaptic transmission. Thus, in the hippocampal slice, the application of convulsant drugs, disturbances in extracellular ion concentrations, and tetanic stimulation which leads to epileptiform activity can all result in a greater number of excitatory synaptic interactions between cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Atkinson,J. R., and Ward,A. A., Jr., 1964, Intracellular studies of cortical neurons in chronic epileptogenic foci in the monkey, Exp. Neurol. 10:285–295.

    Article  CAS  PubMed  Google Scholar 

  • Barinaga, M., 1990, The tide of memory, turning, Science 248:1603–1605.

    Article  CAS  PubMed  Google Scholar 

  • Bekkers, J. M., and Stevens, C. F., 1990, Presynaptic mechanism for long-term potentiation in the hippocampus, Nature 346:724–729.

    Article  CAS  PubMed  Google Scholar 

  • Benardo, L. S., Leona, M. M., and Prince, D. A., 1982, Electrophysiology of isolated hippocampal pyramidal dendrites, J. Neurosci. 2:1614–1622.

    CAS  PubMed  Google Scholar 

  • Burke, S. P., and Nadler, J. V., 1988, Regulation of glutamate and aspartate release from slices of the hippocampal CA1 area: Effects of adenosine and baclofen, J. Neurochem. 51:1541–1551.

    Article  CAS  PubMed  Google Scholar 

  • Cain, D. P., McKitrick, D. J., and Desborough, K. A., 1987, Effects of treatment with scopolamine and naloxone, singly and in combination, on amygdala kindling, Exp. Neurol. 96:97–103.

    Article  CAS  PubMed  Google Scholar 

  • Chamberlin, N. L., and Dingledine, R., 1989, Control of epileptiform burst rate by CA3 hippocampal cell after hyperpolarizations in vitro, Brain Res. 492:337–346.

    Article  CAS  PubMed  Google Scholar 

  • Coombs, J. S., Curtis, D. R., and Eccles, J. C., 1957, The generation of impulses in motoneurones, J. Physiol. (London) 139:232–249.

    CAS  Google Scholar 

  • Czuczwar, S. J., and Meldrum, B., 1982, Protection against chemically induced seizures by 2-amino-7-phosphonoheptanoic acid, Eur, J. Pharmacol. 83:331–338.

    Article  Google Scholar 

  • Czuczwar, S. J., Cavalheiro, E. A., Turski, L., Turski, W. A., and Kleinrok, Z., 1985, Phosphonic analogues of excitatory amino acids raise the threshold for maximal electroconvulsions in mice, Neurosci. Res. 3:86–90.

    Article  CAS  PubMed  Google Scholar 

  • Davidoff, R. A., 1981, Amino acids and presynaptic inhibition, in: Amino Acid Neurotrans-mitters (F. V. DeFeudis and P. Mandel, eds.), Raven Press, New York, pp. 249–254.

    Google Scholar 

  • De Sarro, G., Meldrum, B. S., and Reavill, C., 1985, Anticonvulsant action of 2-amino-7-phos-phonoheptanoic acid in the substantia nigra, Eur. J. Pharmacol. 106:175–179.

    Article  Google Scholar 

  • Dodge, F. A., Jr., and Cooley, J. W., 1973, Action potential of the motorneuron, IBM J. Res. Dev. 17:219–229.

    Article  Google Scholar 

  • Dolphin, A. C., Errington, M. L., and Bliss, T. V. P., 1982, Long-term potentiation of the preferent path in vivo is associated with increased glutamate release, Nature 297:496–498.

    Article  CAS  PubMed  Google Scholar 

  • Dudek, F. E., Andrew, R. D., MacVicar, B. A., Snow, R. W., and Taylor, C. P., 1983, Recent evidence for and possible significance of gap junctions and electronic synapses in the mammalian brain, in: Basic Mechanisms of Neuronal Hyperexcitability (H. H. Jasper and N. M. van Gelder, eds.), Liss, New York, pp. 31–73.

    Google Scholar 

  • Dudek, F. E., Snow, R. W., and Taylor, C. P., 1986, Role of electrical interactions in synchronization of epileptiform bursts, Adv. Neurol. 44:593–617.

    CAS  PubMed  Google Scholar 

  • El Manira, A., Cattaert, D., and Clarac, F., 1990, GABAergic presynaptic inhibition as a modulator of monosynaptic reflex in crustacea, Soc. Neuroci. Abstr. 16:12–26.

    Google Scholar 

  • Engle, J. E., Jr., and Ackermann, R. F., 1980, Interictal EEG spikes correlate with decreased,rather than increased, epileptogenicity in amygdaloid kindled rats, Brain Res. 190:543–548.

    Article  Google Scholar 

  • Fitz, J. G., and McNamara, J. O, 1979, Muscarinic cholinergic regulation of epileptic spiking in kindling, Brain Res. 178:117–127.

    Article  CAS  PubMed  Google Scholar 

  • Fuller, J. H., and Schlag, J. D., 1976, Determination of antidromic excitation by the collision test: Problems of interpretation, Brain Res. 112:283–298.

    Article  CAS  PubMed  Google Scholar 

  • Fuortes, M. G. F., Frank, K., and Becker, M. C., 1957, Steps in the production of motoneuron spikes, J. Gen. Physiol. 40:735–752.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goh, J. W., and Sastry, B. R., 1985, Interactions among presynaptic fiber terminations in the CA1 region of the rat hippocampus, Neurosci. Lett. 60:157–162.

    Article  CAS  PubMed  Google Scholar 

  • Gutnick, M. J., and Prince, D. A., 1972, Thalamocortical relay neurons: Antidromic invasion of spikes from a cortical epileptogenic focus, Science 176:424–426.

    Article  CAS  PubMed  Google Scholar 

  • Heinemann, U., Franceschetti, S., Hamon, B., Konnerth, A., and Yaari, Y., 1985, Effects of anticonvulsants on spontaneous epileptiform activity which develops in the absence of chemical synaptic transmission in hippocampal slices, Brain Res. 325:349–352.

    Article  CAS  PubMed  Google Scholar 

  • Jefferys, J. G. R., and Haas, H. L., 1982, Synchronized bursting of CA1 hippocampal pyramidal cells in the absence of synaptic transmission, Nature 300:448–450.

    Article  CAS  PubMed  Google Scholar 

  • Kandel, E. R., Spencer, W. A., and Brinely, F. J., Jr., 1961, Electrophysiology of hippocampal neurons. I. Sequential invasion and synaptic organization, J. Neurophysiol. 24:225–242.

    CAS  PubMed  Google Scholar 

  • Kauer, J. A., Malenka, R. C., and Nicoll, R. A., 1988, A persistent postsynaptic modification mediates long-term potentiation in the hippocampus, Neuron 1:911–917.

    Article  CAS  PubMed  Google Scholar 

  • Lehman, J., Schneider, J., McPherson, S., Murphy, D. E., Bernard, R., Tsai, C., Bennett, D. A., Pastor, G., Steel, D. J., Boehm, C., Cheney, D. L., Liebman, J.M., Williams, M., and Wood, P. L., 1987, CPP, a selective N-methyl-oaspartate (NMDA)-type receptor antagonist: Characterization in vitro and in vivo, J. Pharmacol. Exp. Ther. 240:737–746.

    Google Scholar 

  • Lerner-Natoli, M., Rondouin, G., and Baldy-Moulinier, M., 1984, Hippocampal kindling in the rat: Intrastructural differences, J. Neurosci. Res. 12:101–111.

    Article  CAS  PubMed  Google Scholar 

  • Levy, R. A., Repkin, A. H., and Anderson, E. G., 1971, The effect of bicuculline on primary afferent terminal excitability, Brain Res. 32:261–265.

    Article  CAS  PubMed  Google Scholar 

  • Lewis, D. V., and Wilson, W. A., 1990, Spontaneous electrographic seizures in the hippocampal slice: An in vitro model for the study of the transition from interictal bursting to ictal activity, in: Kindling 4 (J. A. Wada, ed.), Plenum Press, New York, pp. 11–19.

    Chapter  Google Scholar 

  • McCaslin, P. P., and Morgan, W. W., 1986, Continuously infused 2-amino-7-phophonoheptanoic acid antagonizes N-methyl-n-aspartate-induced elevations of cyclic GMP in vivo in multiple brain areas and chemically-induced seizure activity, Neuropharmacol.25:905–909.

    Article  CAS  Google Scholar 

  • McNamara, J. O., Russell, R. D., Rigsbee, L. C., and Bonhaus, D. W., 1988, Anticonvulsant and antiepileptogenic actions of MK-801 in the kindling and electroshock models, Neuropharmacol. 27:563–568.

    Article  CAS  Google Scholar 

  • Malinow, R., and Tsien, R. W., 1990, Presynaptic enhancement shown by whole-cell recordings of long-term potentiation in hippocampal slices, Nature 346:177–180.

    Article  CAS  PubMed  Google Scholar 

  • Meldrum, B., 1986, Excitatory amino acid antagonists as novel anticonvulsants, Adv. Exp.Med. Biol. 203:321–329.

    Article  CAS  PubMed  Google Scholar 

  • Miles, R., 1988, Plasticity of recurrent excitatory synapses between CA3 hippocampal pyramidal cells, Soc. Neurosci. Abstr. 14:19.

    Google Scholar 

  • Miles, R., and Wong, R. K. S., 1987a, Inhibitory control of local excitatory circuits in the guinea-pig hippocampus, J. Physiol. (London) 388:611–629.

    CAS  Google Scholar 

  • Miles, R., and Wong, R. K. S., 1987b, Latent synaptic pathways revealed after tetanic stimulation in the hippocampus, Nature 329:724–726.

    Article  CAS  Google Scholar 

  • Miles, R., Trans, R. D., and Wong, R. K. S., 1988, Spread of synchronous firing in longitudinal slices from the CA3 region of the hippocampus, J. Neurophysiol. 60:1481–1496.

    CAS  PubMed  Google Scholar 

  • Mody, I., Stanton, P. K., and Heinemann, U., 1988,Activation of N-methyl-D-aspartate receptors parallels changes in cellular and synaptic properties of dentate granule cells after kindling, J. Neurophysiol. 59:1033–1054.

    CAS  PubMed  Google Scholar 

  • Nicoll, R. A., and Alger, B. E., 1979, Presynaptic inhibition: Transmitter and ionic mechanisms, Int. Rev. Neurobiol. 21:217–258.

    Article  CAS  PubMed  Google Scholar 

  • Noebels, J. L., 1982, Spontaneous impulse generaton in cortical axons, in: Abnormal Nerves and Muscles as Impulse Generators, (W. J. Culp and J. Ochoa, eds.), Oxford University Press, London, pp. 322–343.

    Google Scholar 

  • Noebels, J. L., and Prince, D. A., 1978a, Development of focal seizures in cerebral cortex: Role of axon terminal bursting, J. Neurophysiol. 41:1267–1281.

    CAS  Google Scholar 

  • Noebels, J. L., and Prince, D. A., 1978b, Excitability changes in thalamocortical relay neurons during synchronous discharges in cat neocortex, J. Neurophysiol. 41:1282–1296.

    CAS  Google Scholar 

  • Pickles, H. G., and Simmonds, M. A., 1976, Possible presynaptic inhibition in rat olfactory cortex, J. Physiol. (London) 260:475–486.

    CAS  Google Scholar 

  • Pinault, D., 1990, Antidromic firing occurs spontaneously on thalamic relay neurons: Triggering of ectopic action potentials by somatic intrinsic burst discharges, Neuroscience 34:281–292.

    Article  CAS  PubMed  Google Scholar 

  • Pinault, D., and Pumain, R, 1985, Ectopic action potential generation: Its occurrence in a chronic epileptogenic focus, Exp. Brain Res. 60:599–602.

    Article  CAS  PubMed  Google Scholar 

  • Pinault, D., and Pumain, R., 1989, Antidromic firing occurs spontaneously on thalamic relay neurons: Triggering of somatic intrinsic burst discharges by ectopic action potential, Neuroscience 31:625–637.

    Article  CAS  PubMed  Google Scholar 

  • Piredda, S., and Gale, K., 1986, Role of excitatory amino acid transmission in the genesis of seizures elicted from the deep prepiriform cortex, Brain Res. 377:205–210.

    Article  CAS  PubMed  Google Scholar 

  • Pumain, R., 1982, Intracellular potentials of cortical neurons in a chronic epileptogenic focus in: Physiology and Pharmacology of Epileptogenic Phenomena (M. R. Klee, H. D. Lux, and E.-J. Speckmann, eds.) Raven Press, New York, pp. 65–72.

    Google Scholar 

  • Rosen, A. D., and Vastola, E. F., 1971, Corticofugal antidromic activity in epileptogenic focu, Trans. Am. Neurol. Assoc. 96:297–298.

    CAS  PubMed  Google Scholar 

  • Sagratella, S., Frank, C., and Scotti De Carolis, A., 1987, Effects of ketamine and (+)cyclazocine on 4-aminopyridine and “magnesium free” epileptogenic activity in hippocampal slices of rats, Neuropharmacology 26:1181–1184.

    Article  CAS  PubMed  Google Scholar 

  • Sastry, B. R., 1982, Presynaptic change associated with long-term potentiation in hipoocampus, Life Sci. 30:2003–2008.

    Article  CAS  PubMed  Google Scholar 

  • Schwartzkroin, P. A., 1975, Characteristics of CA1 neurons recorded intracellularly in the hippocampal in vitro slice preparation, Brain Res. 85:423–436.

    Article  CAS  PubMed  Google Scholar 

  • Schwartzkroin, P. A., 1977, Further characteristics of hippocampal CA1 cells in vitro, Brain Res. 128:53–68.

    Article  CAS  PubMed  Google Scholar 

  • Schwartzkroin, P. A., and Prince, D. A., 1980, Changes in excitatory and inhibitory synaptic potentials leading to epileptogenic activity, Brain Res. 183:61–76.

    Article  CAS  PubMed  Google Scholar 

  • Schwartzkroin, P. A., Mutani, R., and Prince, D. A., 1975, Orthodromic and antidromic effects of a cortical epileptiform focus on ventrolateral nucleus of the cat, J. Neurophysiol. 38:795–811.

    CAS  PubMed  Google Scholar 

  • Scobey, R. P., and Gabor, A. J., 1975, Ectopic action-potential generation in epileptogenic cortex, J. Neurophysiol. 38:383–394.

    CAS  PubMed  Google Scholar 

  • Shiosaka, S., Yamamoto, T., Hertzberg, E. L., and Nagy, J. L., 1989, Gap junction protein in rat hippocampus: Correlative light and electron microscope immunohistochemical localization, J. Comp. Neurol. 282:282–297.

    Article  Google Scholar 

  • Sloviter, R. S., 1987, Decreased hippocampal inhibition and a selective loss of interneurons in experimental epilepsy, Science 235:73–76.

    Article  CAS  PubMed  Google Scholar 

  • Snow, R. W., and Dudek, F. E., 1984, Synchronous epileptiform bursts without chemical transmission in CA2, CA3 and dentate areas of the hippocampus, Brain Res. 298:382–385.

    Article  CAS  PubMed  Google Scholar 

  • Spencer, S. S., Williamson, P. D., Spencer, D. D., and Mattson, R. H., 1987 Human hippocampal seizure spread studied by depth and subdural recording: The hippocampal commissure, Epilepsia 28:479–489.

    Article  CAS  PubMed  Google Scholar 

  • Spencer, W. A., and Kandel, E. R., 1961, Electrophysiology of hippocampal neurons: IV. Fast prepotnetials, J. Neurophysiol. 24:272–285.

    Google Scholar 

  • Stasheff, S. F., and Wilson, W. A., 1990, Increased ectopic action potential generation accompanies epileptogenesis in vitro, Neurosci. Lett. 111:144–150.

    Article  CAS  PubMed  Google Scholar 

  • Stasheff, S. F., Anderson, W. W., Clark, S., and Wilson, W. A., 1989, NMDA antagonists differentiate epileptogenesis from seizure expression in an in vitro model, Science 245:648–651.

    Article  CAS  PubMed  Google Scholar 

  • Stelzer, A., Slater, N. T., and Ten Bruggencate, G., 1987, Activation of NMDA receptors blocks GABAergic inhibition in an in vitro model of epilepsy, Nature 326:698–701.

    Article  CAS  PubMed  Google Scholar 

  • Swann, J. W., and Brady, R. J., 1984, Penicillin-induced epileptogenesis in immature rat CA3 hippocampal pyramidal cells, Dev. Brain Res. 12:243–254.

    Article  Google Scholar 

  • Swann, J. W., Brady, R. J., Friedman, R. J., and Smith, E. J., 1986, The dendritic origins of penicillin-induced epileptogenesis in CA3 hippocampal pyramidal cells, J. Neurophysiol. 56:1718–1738.

    CAS  PubMed  Google Scholar 

  • Swartzwelder, H. S., Lewis, D. V., Anderson, W. W., and Wilson, W. A., 1987, Seizure-like events in brain slices: Suppression by interictal activity, Brain Res. 410:326–330.

    Google Scholar 

  • Taylor, C. P., and Dudek, F. E., 1982, Synchronous neural afterdischarges in rat hippocampal slices without active chemical synapses, Science 218:810–812.

    Article  CAS  PubMed  Google Scholar 

  • Taylor, C. P., Krnjevic, K., and Ropert, N., 1984, Facilitation of hippocampal CA3 pyramidal cell firing by electrical fields generated antidromically, Neuroscience 11:101–109.

    Article  CAS  PubMed  Google Scholar 

  • Traub, R. D., and Wong, R. K. S., 1983, Synchronized burst discharge in disinhibited hippocampal slice. II. Model of cellular mechanism, J.Neurophysiol. 49:459–471

    CAS  PubMed  Google Scholar 

  • Traub, R. D., Wong, R. K. S., Mlles, R., and Knowles, W. D., 1985, Neuronal interactions during epileptic events in vitro, Fed. Proc. 44:2953–2955.

    CAS  PubMed  Google Scholar 

  • Traub, R. D., Chamberlin, N. L., and Dingledine, R., 1989, Model of high potassium induced synchronized bursts in the rat hippocampal slice; possible role of spontaneous EPSPs initiation, Soc. Neurosci. Abstr. 15:701.

    Google Scholar 

  • Traynelis, S. F., and Dingledine, R., 1988, Potassium-induced spontaneous electrographic seizures in the rat hippocampal slice, J. Neurophysiol. 59:259–276.

    CAS  PubMed  Google Scholar 

  • Turski, L., Klockgether, T., Sontag, K.-H., Herrling, P. L., and Watkins, J. C., 1987a, Muscle relaxant and anticonvulstant activity of 3-((±)-2-carboxypiperazine-4-yl)-propyl-1phosphonic acid, a novel N-methyl-D-aspartate antagonist, in rodents, Neurosci. Lett. 73:143–148.

    Article  CAS  Google Scholar 

  • Turski, L., Meldrum, B. S., Turski, W. A., and Watkins, J. C., 1987b, Evidence that antagonism at non-NMDA receptors results in anticonvulsant action, Eur. J. Pharmacol. 136:69–73.

    Article  CAS  Google Scholar 

  • Vizi, E. S., 1984, Non-synaptic Interactions Between Neurons: Modulations of Neurochemical Transmission, Wiley, New York, pp. 98–179.

    Google Scholar 

  • Wall, P. D., 1962, The origin of a spinal-cord slow potential, J. Physiol. (London) 164:508–526.

    CAS  Google Scholar 

  • Walther, H., Lambert, J. D. C., Jones, R. S. G., Heinemann, U., and Hamon, B., 1986, Epileptiform activity in combined slices of the hippocampus, subiculum and entorhinal cortex during perfusion with low magnesium medium, Neurosci. Lett. 69:156–161.

    Article  CAS  PubMed  Google Scholar 

  • Ward, A. A., Jr., 1969, The epileptic neuron: Chronic focu in animals and man, in: Basic Mechanisms of the Epilepsies (H. H. Jasper, A. A. Ward, Jr., and A. Pope, eds.), Little, Brown, Boston, pp. 263–288.

    Google Scholar 

  • Wong, R. K. S., and Traub, R. D., 1983, Synchronized burst discharge in disinhibited hippocampal slice. I. Initiation in CA2–CA3 region, J.Neurophysiol. 49:442–458.

    CAS  PubMed  Google Scholar 

  • Wong, R. K. S., Prince, D. A., and Basbaum, A. I., 1979, Intradendritic recordings from hippocampal neurons, Proc. Natl. Acad. Sci. USA 76:986–990.

    Article  CAS  PubMed  Google Scholar 

  • Wong, R. K. S., Traub, R. D., and Miles, R., 1986, Cellular basis of neuronal synchrony in epilepsy, Adv. Neurol. 44:583–592.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Stasheff, S.F., Wilson, W.A. (1992). AXON Terminal Hyperexcitability Seen in Epileptogenesis In Vitro . In: Narahashi, T. (eds) Ion Channels. Ion Channels. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3328-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3328-3_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6466-5

  • Online ISBN: 978-1-4615-3328-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics