Skip to main content

The Role of Proteases in the Pathogenesis of Pseudomonas aeruginosa Infections

  • Chapter
Pseudomonas aeruginosa as an Opportunistic Pathogen

Abstract

Pseudomonas aeruginosa is the most common gram-negative organism causing nosocomial infections and is a major pathogen in immuno- and myelosuppressed patients. Unlike many other gram-negative organisms, P. aeruginosa is non-fermentative and usually aerobic but will grow under anaerobic conditions in the presence of a suitable nitrogen source. The ability to adapt to varying oxygen concentrations is undoubtedly important in enabling P. aeruginosa to survive in soil, water, wounds and devitalized tissues.1 The organism also has the ability to elaborate a large number of secretory products and proteins including extracellular proteases.2,3 The specific functions or adaptive advantages gained by P. aeruginosa in the natural environment through the secretion of these proteases are not clear, but they are probably involved in nutrient scavenging, which provides the organism with nitrogen-rich digestion products to allow growth. Two major potent proteases have been isolated, characterized and extensively studied: Pseudomonas elastase (PE) and an alkaline protease (PAP). Pseudomonas isolated from a variety of environmental sources and from the tissues of infected patients secrete these proteases,4 which are probably instrumental in initiating and controlling the tissue invasion and necrosis characteristic of Pseudomonas infections.5,6

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Rhame, E S., 1980, The ecology and epidemiology of Pseudomonas aeruginosa, In: Pseudomonas aeruginosa: The Organism,Diseases it Causes and their Treatment (L. D. Sabath, ed.), Hans Huber Publishers, Bern, Switzerland, pp. 31–51.

    Google Scholar 

  2. Liu, P. V., 1974, Extracellular toxins of Pseudomonas aeruginosa, J. Infect. Dis. 130:S94–S99.

    Article  PubMed  Google Scholar 

  3. Nicas, T. I., and Iglewski, B. H., 1985, The contribution of exoproducts to virulence of Pseudomonas aeruginosa,Can. J. Microbiol. 31:387–392.

    Article  PubMed  CAS  Google Scholar 

  4. Nicas, T. I., and Iglewski, B. H., 1986, Production of elastase and other exoproducts by environmental isolates of Pseudomonas aeruginosa, J. Clin. Microbiol. 23:967–969.

    PubMed  CAS  Google Scholar 

  5. Homma, J. Y., Marsuura, M., Shibata, M., Kazuyama, Y., Uamamoto, M., Kubota, Y., Hirayama, T., and Kato, I., 1984, Production of leucocidin by clinical isolates of Pseudomonas aeruginosa and antileucocidin antibody from sera of patients with diffuse panbronchitis, J. Clin. Microbial. 20:855–859.

    CAS  Google Scholar 

  6. Morihara, K., and Homma, J. Y., 1985, Pseudomonas proteases, in Bacterial Enzymes and Virulence (I. Holder, ed.), CRC Press, Inc., Boca Raton, FL, pp. 41–75.

    Google Scholar 

  7. Gray, L., Kenny, B., Mackman, N., Haigh, R., and Holland, I. B., 1989, A novel C-terminal signal sequence targets Escherichia coli haemolysin directly to the medium, J. Cell Sci. Suppl. 11:45–57.

    PubMed  CAS  Google Scholar 

  8. Lazdunski, A., Guzzo, J., Filloux, A., Bally, M., and Murgier, M., 1990, Secretion of extracellular proteins by Pseudomonas aeruginosa. Biochimie 72:147–156.

    Article  PubMed  CAS  Google Scholar 

  9. Guzzo, J., Murgier, M., Filloux, A., and Lazdunski, A., 1990, Cloning of the Pseudomonas aeruginosa alkaline protease gene and secretion of the protease into the medium by Escherichia coli, J. Bacteriol. 172:942–948.

    PubMed  CAS  Google Scholar 

  10. Kessler, G., and Saffrin, M., 1988, Synthesis, processing, and transport of Pseudomonas aeruginosa elastase, J. Bacteriol. 170:5241–5247.

    PubMed  CAS  Google Scholar 

  11. Berer, R. A., and Iglewski, B. H., 1988, Molecular characterization and nucleotide sequence of the Pseudomonas aeruginosa elastase structural gene, J. Bacterial. 170:4309–4314.

    Google Scholar 

  12. Black, W. J., Quinn, E D., and Tompkins, L. S., 1990, Legionella pneumophila zinc metallo-protease is structurally and functionally homologous to Pseudomonas aeruginosa elastase, J. Bacterial. 172:2608–2613.

    CAS  Google Scholar 

  13. Strom, S. M., Nunn, D., and Lory, S., 1991, Multiple roles of the pilus biogenesis protein PilD: Involvement of PilD in excretion of enzymes from Pseudomonas aeruginosa, J. Bacteriol. 173: 1175–1180.

    CAS  Google Scholar 

  14. Bullen, J. J., 1985, Iron and infection, Eur. J. Clin. Microbiol. 4:537–539.

    Article  PubMed  CAS  Google Scholar 

  15. Cox, C. D., 1985, Iron transport and serum resistance in Pseudomonas aeruginosa, Antibiot. Chemother. 36:1–12.

    PubMed  CAS  Google Scholar 

  16. Bjorn, M. J., Sokol, P. A., and Iglewski, B. H., 1979, Influence of iron on yields of extracellular product in Pseudomonas aeruginosa cultures, J. Bacteriol. 138:193–200.

    PubMed  CAS  Google Scholar 

  17. Woods, D. E., Schaffer, M. S., Rabin, H. R., Campbell, G. D., and Sokol, P. A., 1986, Phenotypic comparison of Pseudomonas aeruginosa strains isolated from a variety of clinical sites, J. Clin. Microbiol. 24:260–264.

    PubMed  CAS  Google Scholar 

  18. Gray, L. D., and Kreger, A. S., 1975, Rabbit corneal damage produced by Pseudomonas aeruginosa infection, Infect. Immun. 12:419–432.

    PubMed  CAS  Google Scholar 

  19. Kreger, A. S., and Gray, L. D., 1978, Purification of Pseudomonas aeruginosa proteases and microscopic characterization of pseudomonal protease-induced rabbit corneal damage, Infect. Immun. 19:630–648.

    PubMed  CAS  Google Scholar 

  20. Gray, L. D., and Kreger, A. S., 1979, Microscopic characterization of rabbit lung damage produced by Pseudomonas aeruginosa proteases, Infect. Immun. 23:150–159.

    PubMed  CAS  Google Scholar 

  21. Liu, P. V., 1966, The roles of various fractions of Pseudomonas aeruginosa in its pathogenesis. II. Effects of lecithinase and protease, J. Infect. Dis. 116:112–116.

    Article  PubMed  CAS  Google Scholar 

  22. Kreger, A. S., and Griffin, O. K., 1974, Physicochemical fractionation of extracellular cornea-damaging proteases of Pseudomonas aeruginosa, Infect. Immun. 9:828–834.

    PubMed  Google Scholar 

  23. Kawaharajo, K., Homma, J. Y., Aoyama, Y., and Morihara, K., 1975, In vivo studies on protease and elastase from Pseudomonas aeruginosa, Jpn. J. Exp. Med. 45:89–100.

    PubMed  CAS  Google Scholar 

  24. Mull, J. D., and Callahan, W. S., 1965, The role of the elastase of Pseudomonas aeruginosa in experimental infection, Exp. Mol. Pathol. 4:567–575.

    Article  PubMed  CAS  Google Scholar 

  25. Döring, G.,Obernesser; H. J., Botzenhart, K., Flehming, B., Holly, N., and Hofmann, A., 1983, Proteases of Pseudomonas aeruginosa in patients with cystic fibrosis, J. Infect. Dis. 147: 744–750.

    Article  PubMed  Google Scholar 

  26. Klinger, J. D., Straus, D. C., Hilton, C. B., and Bass, J. A., 1978, Antibodies to proteases and exotoxin A of Pseudomonas aeruginosa in patients with cystic fibrosis: Demonstration by radioimmunoassay, J. Infect. Dis. 138:49–58.

    Article  PubMed  CAS  Google Scholar 

  27. Wretlind, B., and Pavlovskis, O. R., 1981, The role of proteases and exotoxin A in the pathogenicity of Pseudomonas aeruginosa infections, Scand. J. Infect. Dis. 29:13–19.

    CAS  Google Scholar 

  28. Heck, L. W, Morihara, K., McRae, W. B., and Miller, E. J., 1986, Specific cleavage of human type III and IV collagens by Pseudomonas aeruginosa elastase, Infect. Immun. 51:115–118.

    PubMed  CAS  Google Scholar 

  29. Heck, L. W, Morihara, K., and Abrahamson, D. R., 1986, Degradation of soluble laminin and depletion of tissue-associated basement membrane laminin by Pseudomonas aeruginosa elastase and alkaline protease, Infect. Immun. 54:149–153.

    PubMed  CAS  Google Scholar 

  30. Costerton, J. W, Brown, M. R. W, and Sturgess, J. M., 1979, The cell envelope: Its role in infection, in: Pseudomonas aeruginosa: Clinical Manifestations of Infection and Current Therapy, (R. G. Doggett, ed.), Academic Press, New York, pp. 41–62.

    Google Scholar 

  31. Lam, J., Chan, R., Lam, K., and Costerton, J. W, 1980, Production of mucoid microcolonies by Pseudomonas aeruginosa within infected lungs in cystic fibrosis, Infect. Immun. 28:546–556.

    PubMed  CAS  Google Scholar 

  32. Anastassiou, E. D., Karakiulakis, G., Missirhs, E., Maragoudakis, M. E., and Dimitracopoulos, G., 1989, Comparative evaluation of mitogenicity and basement-membranedegrading activity of Pseudomonas aeruginosa slime glycolipoprotein and alginate, J. Clin. Microbiol. 27:490–494.

    PubMed  CAS  Google Scholar 

  33. Janda, J. M., and Bottone, E. J., 1981, Pseudomonas aeruginosa enzyme profiling: Predictor of potential invasiveness and use as an epidemiological tool, J Clin. Microbiol. 14:55–60.

    PubMed  CAS  Google Scholar 

  34. Wretlind, B., and Pavlovskis, O. R., 1981, The role of proteases and exotoxin A in the pathogenicity of Pseudomonas aeruginosa infections, Scand. J. Infect. Dis. 29:13–19.

    CAS  Google Scholar 

  35. Schwartzmann, S., and Boring, J. R., III, 1971, Antiphagocytic effect of slime from a mucoid strain of Pseudomonas aeruginosa,Infect. Immun. 3:762–767.

    Google Scholar 

  36. Baltimore, R. S., and Mitchell, M., 1980, Immunologic investigation of mucoid strains of Pseudomonas aeruginosa: Comparison of susceptibility of opsonic antibody in mucoid and nonmucoid strains, J. Infect. Dis. 141:238–247.

    Article  PubMed  CAS  Google Scholar 

  37. Hinglay, S. T., Hastie, A. T., Kueppers, E, and Higgins, M. L., 1986, Disruption of respiratory cilia by proteases including those of Pseudomonas aeruginosa, Infect. Immun. 54: 379–385.

    Google Scholar 

  38. Woods, D. E., Cryz, S. J., Friedman, R. L., and Iglewski, B. H., 1982, Contribution of toxin A and elastase to virulence of Pseudomonas aeruginosa in chronic lung infections of rats, Infect. Immun. 36:1223–1228.

    PubMed  CAS  Google Scholar 

  39. Kessler, E., Kennah, H. E., and Brown, S. I., 1977, Pseudomonas proteases. Purification, partial characterization and its effect on collagen, proteoglycan and rabbit corneas, Invest. Ophthalmol. Visual Sci. 16:488–497.

    CAS  Google Scholar 

  40. Gadeck, J. E., Fells, G. A., Wright, D. G., and Crystal, R., 1980, Human neutrophil elastase functions as a type III collagen “collagenase,” Biochem. Biophys. Res. Commun. 95:1815–1822.

    Article  Google Scholar 

  41. Mainardi, C. L., Dixit, S., and Kang, A. H., 1980, Degradation of type IV (basement membrane) collagen by a proteinase isolated from human polymorphonuclear leukocyte granules, J. Biol. Chem. 255:5435–5441.

    PubMed  CAS  Google Scholar 

  42. Timpl, R., Ronde, H., Robey, P. G., Rennard, S. I., Foidart, J.-M., and Martin, G. R., 1979, Laminin-a glycoprotein from basement membranes, J. Biol. Chem. 254:9933–9937.

    PubMed  CAS  Google Scholar 

  43. Kleinmann, H. R., McCarrey, M. L., Hassell, J. R., Martin, G. R., Van Evercooren, A. B., and Dubois-Dakq, M., 1984, Role of laminin in basement membrane and in growth, adhesion and differentiation of cells, in: Role of Extracellular Matrix in Development (R. T. Trelstad, ed.), Alan R. Liss Inc., New York, pp. 123–143.

    Google Scholar 

  44. Terranova, V. P, Rohrbach, D. H., and Martin, G. R., 1980, Role of laminin in the attachment of PAM 212 (epithelial) cells to basement membrane collagen, Cell 22:719–726.

    Article  PubMed  CAS  Google Scholar 

  45. Woodley, G. T., Rao, C. N., Hassell, J. R., Liotta, L. A., Martin, G. R., and Kleinmann, H. K., 1983, Interaction of basement membrane components, Biochem. Biophys. Acta 761:278–283.

    Article  PubMed  CAS  Google Scholar 

  46. Blackwood, L. I.., Stone, R. M., Iglewski, B. H., and Pennington, J. E., 1983, Evaluation of Pseudomonas aeruginosa exotoxin A and elastase as virulence factors in acute lung infection, Infect. Immun. 39:198–201.

    PubMed  CAS  Google Scholar 

  47. Döring, G., Dalhoff, A., Vogel, O., Brunner, H., Dröge, U., and Botzenhart, K., 1984, In vivo activity of proteases in Pseudomonas aeruginosa in a rat model, J. Infect. Dis. 149:532–537.

    Article  PubMed  Google Scholar 

  48. Kharazmi, A., Döring, G., Høiby, N., and Valenius, N. H., 1984, Interaction of Pseudomonas aeruginosa alkaline protease and elastase with human polymorphonuclear leukocytes in vitro,Infect. Immun. 43:161–165.

    PubMed  CAS  Google Scholar 

  49. Kharazmi, A., Høiby, N., Döring, G., and Valerius, N. H., 1984, Pseudomonas aeruginosa exoproteases inhibit human neutrophil chemiluminescence, Infect. Immun. 44:587–591.

    PubMed  CAS  Google Scholar 

  50. Kharazmi, A., Eriksen, H.O., Döring, G., Goldstein, W, and Høiby, N., 1986, Effect of Pseudomonas aeruginosa proteases on human leukocyte phagocytosis and bactericidal activity, Acta Pathol. Microbiol. Immunol. Scand. Sect. C 94:175–179.

    CAS  Google Scholar 

  51. Pedersen, B. K., and Kharazmi, A., 1987, Inhibition of human natural killer cell activity by Pseudomonas aeruginosa alkaline protease and elastase, Infect. Immun. 55:986–989.

    PubMed  CAS  Google Scholar 

  52. Pedersen, B. K., Kharazmi, A., Theanoler, T. G., Ødum, N., Andersen, V, and Bendtzen, K., 1987, Selective modulation of the CD4 molecular complex by Pseudomonas aeruginosa alkaline protease and elastase, Scand. J. Immunol. 26:91–94.

    Article  PubMed  CAS  Google Scholar 

  53. Parmely, M., Gale, A., Clabaugh, M., Horvat, R., and Zhou, W.-W., 1990, Proteolytic inactivation of cytokines by Pseudomonas aeruginosa,Infect. Immun. 58:3009–3014.

    PubMed  CAS  Google Scholar 

  54. Heck, L. W, Alarcon, P. G., Kukhavy, R. M., Morihara, K., Russell, M. W, and Mestecky, J. E, 1990, Degradation of IgA proteins by Pseudomonas aeruginosa elastase, J. Immunol. 144: 2253–2257.

    PubMed  CAS  Google Scholar 

  55. Blackwood, L. I.., Lin, T., and Rowe, J. I., 1987,Suppression of the delayed-type hypersensitivity and cell-mediated immune responses to Listeria monocytogenes induced by Pseudomonas aeruginosa, Infect. Immun. 55:639–644.

    PubMed  CAS  Google Scholar 

  56. Petit, J-C., Richard, G., Albert, B., and Daquet, G.-L., 1982, Depression by Pseudomonas aeruginosa of two T-cell mediated responses, anti-Listeria immunity and delayed-type hypersensitivity to sheep erythrocytes, Infect. Immun. 35:900–908.

    PubMed  CAS  Google Scholar 

  57. Horvat, R. T., and Parmely, M. J., 1988, Pseudomonas aeruginosa alkaline protease degrades human gamma interferon and inhibits its bioactivity, Infect. Immun. 56:2925–2932.

    PubMed  CAS  Google Scholar 

  58. Horvat, R. T., Clabaugh, M., Duval-Jobe, C., and Parmely, M. J., 1989, Inactivation of human gamma interferon by Pseudomonas aeruginosa proteases: Elastase augments the effects of alkaline protease despite the presence of α2-macroglobulin, Infect. Immun. 57:1668–1674.

    PubMed  CAS  Google Scholar 

  59. Colbert, M. A, Belin, D., Vassalli, J.-D., de Kossodo, S., and Vassalli, E, 1986, Interferon enhances macrophage transcription of the tumor necrosis factor/cachectin, interleukin 1, and urokinase genes, which are controlled by short-lived repressors, J. Exp. Med. 164:2113–2118.

    Article  Google Scholar 

  60. Pober, J. S., Gimbrone, M. A., Cotran, R. S., Reiss, C. S., Burakoff, S. J., Fiers, W, and Aults, K. A., 1983, Ia expression by vascular endothelium is inducible by activated T cells and by human γ-interferon, J. Exp. Med. 157:1339–1353.

    Article  PubMed  CAS  Google Scholar 

  61. Wong, G. H. W, Clark-Lewis, I., McKimm-Breschkin, J. L., Harris, A. W, and Schrader, J. W, 1983, Interferon-γinduces enhanced expression of la and H-2 antigens on B lymphoid, macrophage, and myeloid cell lines, J. Immunol. 131:788–793.

    PubMed  CAS  Google Scholar 

  62. Guyre, P. M., Morganelli, P. M., and Miller, R., 1983, Recombinant immune interferon increases immunoglobulin G Fc receptors on cultured human mononuclear phagocytes, J. Clin. Invest. 72:393–397.

    Article  PubMed  CAS  Google Scholar 

  63. Theander, T. G., Kharazmi, A., Pedersen, B. K., Christensen, L. D., Tvede, N., Poulsen, L. K., Odum, N., Svenson, M., and Bendtzen, K., 1988, Inhibition of human lymphocyte proliferation and cleavage of interleukin-2 by Pseudomonas aeruginosa proteases, Infect. Immun. 56:1673–1677.

    PubMed  CAS  Google Scholar 

  64. Schultz, D. R., and Miller, K. D., 1974, Elastase of Pseudomonas aeruginosa: inactivation of complement components and complement derived chemotactic and phagocytic factors, Infect. Immun. 10:128–135.

    PubMed  CAS  Google Scholar 

  65. Holder, I. A., and Wheeler, R., 1984, Experimental studies of the pathogenesis of infections owing to Pseudomonas aeruginosa elastase, an IgG protease, Can. Microbiol. 30:1118–1124.

    Article  CAS  Google Scholar 

  66. Morihara, K., Tsuzuki, H., and Oda, K., 1979, Protease and elastase of Pseudomonas aeruginosa: Inactivation of human plasma al-proteinase inhibitor, Infect. Immun. 24: 188–193.

    PubMed  CAS  Google Scholar 

  67. Vachino, G., Heck, L. W, Gelfand, J. A., Kaplan, M. M., Burke, J. E, Berninger, R. W, and McAdam, K. P. W. J., 1988, Inhibition of human neutrophil and Pseudomonas elastases by the amyloid P component: A constituent of elastic fibers and amyloid deposits, J. Leuk. Biol. 44: 529–534.

    CAS  Google Scholar 

  68. Fritz, H., and Wunderer, G., 1983, Biochemistry and applications of aprotinin, the kallikrein inhibitor from bovine organs, Arzneim Forsch. 33:479–494.

    CAS  Google Scholar 

  69. Twining, S. S., Davis, S. D., and Hyndink, R. A., 1986, Relationship between proteases and descemetocele formation in experimental Pseudomonas keratitis, Curr. Eye Res. 5:503–510.

    Article  PubMed  CAS  Google Scholar 

  70. Stuart, J. C., Turgeon, P. T., and Kowalski, R. P., 1991, Aprotinin treatment of Pseudomonal corneal infection, Cornea 10:63–66.

    PubMed  CAS  Google Scholar 

  71. Bohigian, G., Valenton, M., Okamoto, M., and Carraway, B. L., 1976, Collagenase inhibitors in Pseudomonas keratitis, Arch. Ophthalmol. 91:52–56.

    Article  Google Scholar 

  72. Grimwood, K., To, M., Rabin, H. R., and Woods, D. E., 1989, Inhibition of Pseudomonas aeruginosa exoenzyme expression by subinhibitory antibiotic concentrations, Antimicrob. Ag. Chemother. 33:41–47.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Steadman, R., Heck, L.W., Abrahamson, D.R. (1993). The Role of Proteases in the Pathogenesis of Pseudomonas aeruginosa Infections . In: Campa, M., Bendinelli, M., Friedman, H. (eds) Pseudomonas aeruginosa as an Opportunistic Pathogen. Infectious Agents and Pathogenesis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3036-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3036-7_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6324-8

  • Online ISBN: 978-1-4615-3036-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics