Skip to main content

Molecular Properties of Insulin/IGF-1 Hybrid Receptors 4th International Symposium on Insulin, IGFs and Their Receptors

  • Chapter
Current Directions in Insulin-Like Growth Factor Research

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 343))

Abstract

Insulin and IGF-1 are two highly related growth factors which mediate pleiotropic cellular responses1–3. These hormones regulate their specific actions via binding to specific high affinity receptors on the plasma membrane of target cells. Similar to these growth factors, the receptors for insulin and IGF-1 share a high degree of structural and functional properties4–7. Both these receptors are classified as Type I receptors being composed of two a subunits and two β subunits which are disulfide-linked into an α2β2 heterotetrameric complex (Figure 1). The receptor subunits are initially synthesized as αβ polypeptide fusion precursor proteins which undergoes extensive co-and post-translational modifications8–12. The receptor Mr 155,000 αβ precursors undergoe co-translational acylation and Asn-linked glycosylation. As the precursor is processed from the endoplasmic reticulum through the trans-Golgi network, intramolecular disulfide bonds are formed linking the a subunit to the β subunit. During this time frame, two αβ fusion precursors non-covalently dimerize followed by proteolytic cleavage at a furin-like tetrabasic sequence which separates the a subunit from the β subunit. Finally, the dimerized αβ half-receptors become disulfide-linked through the a subunits coincident with the addition of terminal sialic acid residues and exposure of the native α2β2 heterotetrameric receptor on the cell surface membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.M. Rechter and S.P. Nissley, The nature and regulation of the receptors for insulinlike growth factors, Annu. Rev. Physiol 47:425–442 (1985).

    Article  Google Scholar 

  2. I.D. Goldfine, The insulin receptor; Molecular biology and transmembrane signaling,Endocrinol Rev. 8: 235–255 (1987).

    Article  CAS  Google Scholar 

  3. S. Jacobs and P. Cuatrecasas, Insulin Receptors, Annu. Rev. Pharmacol. Toxicol. 23:461–479 (1983).

    Article  PubMed  CAS  Google Scholar 

  4. Y. Ebina, L. Ellis, K. Jarnagin, M. Edery, L. Graf, E. Clauser, J.-H. Ou, R. Masiarz, Y.W. Kan, I.D. Goldfine, R.A. Roth, and W.J. Rutter, The insulin receptor; Molecular biology and transmembrane signaling, Cell 40: 747–758 (1985).

    Article  PubMed  CAS  Google Scholar 

  5. A. Ulrich, J.R. Bell, E.Y. Chen, R. Herrera, L.M. Petruzzelli, T.J. Dull, A. Gray, L. Coussens, Y.-C. Liao, M. Tsubokawa, A. Mason, P.H. Seeburg, C.L. Grunfeld, O.M. Rosen, and J. Ramachandran, Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes, Nature . 313: 756–761 (1985).

    Article  Google Scholar 

  6. G. Steele-Perkins, J. Turner, J.C. Edman, J. Hari, S.B. Pierce, C. Stover, W.J. Rutter, and R.A. Roth, Expression and characterization of a functional human insulin-like growth factor I receptor, J. Biol.Chem. 263: 11486–11492 (1988).

    PubMed  CAS  Google Scholar 

  7. A. Ullrich, A. Gray, A.W. Tam, T. Yang-Feng, M. Tsubokawa, C. Collins, W.Henzel, T. LeBon, S. Kathuria, E. Chen, S.Jacobs, U. Francke, J. Ramachandran, and Y. Fujita-Yamaguchi, Insulin-like growth factor I receptor primary structure: Comparison with insulin receptor suggests structural determinants that define functional specificity, EMBO J. 5: 2503–2512 (1986).

    PubMed  CAS  Google Scholar 

  8. E. Van Oberghen, M. Kasuga, M. LeCam, J.A. Hedo, A. Itin, and L.C. Harrison,Biosynthetic labeling of insulin receptor: Studies of subunits in cultured human IM-9 lymphocytes, Proc. Natl. Acad. Sci. USA . 78: 1052–1056 (1981).

    Article  Google Scholar 

  9. J.B. Forsayeth, B. Maddux,and I.D. Goldfine, Biosynthesis and processing of the human insulin receptor, Diabetes . 35: 837–846 (1986).

    Article  PubMed  CAS  Google Scholar 

  10. J.A. Hedo, E. Collier, and A. Watkinson, Myristyl and palmityl acylation of the insulin receptor, J. Biol Chem. 262: 954–957 (1987).

    PubMed  CAS  Google Scholar 

  11. P.J. Deutsch, C.F. Wan, O.M. Rosen, and C.S.Rubin, Latent insulin receptors and possible receptor precursors in 3T3-L1 adipocytes, Proc. Natl. Acad. Sci. USA. 80: 133–136 (1983).

    Article  PubMed  CAS  Google Scholar 

  12. G.V. Ronnett, P. Knutson, R.A. Kohanski, T.L. Simpson, and M.D. Lane, Role of glycosylation in the processing of newly translated insulin proreceptor in 3T3-L1 adipocytes, J. Biol. Chem. 259: 4566–4575 (1984).

    PubMed  CAS  Google Scholar 

  13. A.S. Andersen, T. Kjeldsen, F.C. Wiberg, P.M. Christensen, J.S. Rasmussen, K. Norris, K.B. Moller, and N.P.H. Moller, Changing the insulin receptor to possess insulin-like growth factor I ligand specificity, Biochemistry. 29: 7363–7366 (1990).

    Article  PubMed  CAS  Google Scholar 

  14. T.A. Gustaf son, and W.J. Rutter, The cysteine-rich domains of the insulin and insulinlike growth factor I receptors are primary determinants of hormone binding specificity, J. Biol. Chem. 265: 18663–18667 (1990).

    Google Scholar 

  15. T. Kjeldsen, A.S. Andersen, F.C Wiberg, J.S. Rasmussen, L. Schaffer, P.Baischmidt, D.B. Moller, and N.P.H. Moller, The ligand specificities of the insulin receptor and the insulin-like growth factor I receptor reside in different regions of a common binding site, Proc. Natl. Acad. Sci. USA. 88: 4404–4408 (1991).

    Article  PubMed  CAS  Google Scholar 

  16. R. Schumacher, L. Mosthaf, J. Schlessinger, D. Brandenburg, and A. Ullrich, Insulin and IGF1 binding specificity is determined by distinct regions of their cognate receptors, J. Biol. Chem. 266: 19288–19295 (1991).

    PubMed  CAS  Google Scholar 

  17. B. Zhang, and R.A. Roth, A region of the insulin receptor important for ligand binding, Proc. Natl. Acad. Sci. USA. 88: 9858–9862 (1991).

    Article  PubMed  CAS  Google Scholar 

  18. C.C. Yip, C. Grunfeld, and I.D. Goldfine, Identification and characterization of the 1 igand-binding domain of insulin receptor by use of an anti-peptide antiserum against arnino acid sequence 241–251 of the alpha subunit, Biochemistry. 30: 695–701 (1991).

    Article  PubMed  CAS  Google Scholar 

  19. C.C. Yip, H. Hsu, R.G. Patel, H.M. Hawley, B.A. Maddux, and I.D. Goldfine, Localization of the insulin-binding site to the cysteine-rich region of the insulin receptor alpha-subunit, Biochem. Biophys. Res. Commun. 157: 321–329 (1988).

    Article  PubMed  CAS  Google Scholar 

  20. R. Rafaeloff, R. Patel, C.C. Yip, I.D. Goldfine, and D.M. Hawley, Mutation of the high cysteine region of the human insulin receptor α-subunit increases insulin receptor binding affinity and transmembrane signalling, J. Biol. Chem. 264: 15900–15904 (1989).

    PubMed  CAS  Google Scholar 

  21. F. Wedekind, K. Baer-Pontzen, S. Bala-Mohan, D. Choli, H. Zahn, and D. Brandenburg, Hormone binding site of the insulin receptor: Analysis using photoaffinity-mediated avidin complexing, Biol. Chem. Hoppe-Seyler. 370: 251–258 (1989).

    Article  PubMed  CAS  Google Scholar 

  22. S.M. Waugh, E.E. DiBella, and P.F. Pilch, Isolation of a proteolytically derived domain of the insulin receptor containing the major site of cross-linking/binding, Biochemistry. 28: 3448–3455 (1989).

    Article  PubMed  CAS  Google Scholar 

  23. M. Fabry, E. Schaefer, L. Ellis, E. Kojro, Fahrenholz and D. Brandenburg, Detection of a new hormone contact site within the insulin receptor ectodomain by the use of a novel photoreactive insulin, J. Biol. Chem. 267: 8950–8956 (1992).

    PubMed  CAS  Google Scholar 

  24. P. DeMeyts, J.-L. Gu, R.M. Shymko, B.E. Kaplan, G.I. Bell, and J.Whittaker, Identification of a ligand-binding region of the human insulin receptor encoded by the second exon of the gene, Mol. Endocrinol. 4: 409–416 (1990).

    Article  CAS  Google Scholar 

  25. B. Cheathman, and C.R. Kahn, Cyseine 647 in the insulin receptor is required for normal covalent interaction between a and ß subunits in signal transduction, J. Biol. Chem. 267: 7108–7115 (1992).

    Google Scholar 

  26. H.E. Tornqvist, J.R. Gunsalus, R.A. Nemenoff, A.R. Frackelton, M.W. Pierce, and J. Avruch, Identification of the insulin receptor tyrosine residues undergoing insulin stimulated phosphorylation in intact rat hepatoma cells, J. Biol. Chem. 263: 350–359 (1988).

    PubMed  CAS  Google Scholar 

  27. M.F. White, S.E. Shoelson, H. Keutmann, and C.R.Kahn, A cascade of tyrosine autophosphorylation in the ß-subunit activates the phosphotransferase of the insulin receptor, J. Biol. Chem. 263: 2969–2980 (1988).

    PubMed  CAS  Google Scholar 

  28. H.Maegawa, J.M. Olefsky, S. Thies, D. Boyd, A. Ullrich, and D.A. McClain, Insulin receptors with defective tyrosine kinase inhibit normal receptor function at the level of substrate phosphorylation, J. Biol. Chem. 263: 12629–12637 (1988).

    PubMed  CAS  Google Scholar 

  29. K.-T. Yu, and M.P. Czech, Tyrosine phosphorylation of insulin receptor ß subunit activates the receptor tyrosine kinase in intact H-35 hepatoma cells, J. Biol. Chem. 261: 4715–4722 (1986).

    PubMed  CAS  Google Scholar 

  30. O.M. Rosen, R. Herrera, Y. Olowe, L.M. Petruzzelli, and M.H. Cobb, Phosphorylation activates the insulin receptor tyrosine protein kinase, Proc. Natl. Acad. Sci. USA. 80: 3237–3240 (1983).

    Article  PubMed  CAS  Google Scholar 

  31. R.A. Kohanski, and M.D. Lane, Kinetic evidence for activating and non-activating components of autophosphorylation of the insulin receptor protein kinase, Biochem. Biophys. Res. Commun. 134: 1312–1318 (1986).

    Article  PubMed  CAS  Google Scholar 

  32. L.J.Sweet, B.D. Morrison, P.A. Wilden, and J.E. Pessin, Insulin dependent intermolecular subunit communication, J. Biol. Chem. 262: 16730–16738 (1987).

    PubMed  CAS  Google Scholar 

  33. D.A. McClain, H. Maegawa, J. Levy, T. Huecksteadt, T.J. Dull, A. Ullrich, and J.M. Olefsky, Properties of a human insulin receptor with a COOH-terminal truncation, J. Biol. Chem. 263: 8904–8911 (1988).

    PubMed  CAS  Google Scholar 

  34. H. Maegawa, D.A. McCalin, G. Freidenberg, J.M. Olefsky, M. Napier, T. Lapari,T.J. Dull, J. Lee, and A. Ullrich, Properties of a human insulin receptor with a COOH-terminal truncation, J. Biol. Chem. 263: 8912–8917 (1988).

    PubMed  CAS  Google Scholar 

  35. R.S. Thies, A. Ullrich, and D.A. McClain, Augmented mitogenesis and impaired metabolic signaling mediated by a truncated insulin receptor, J. Biol. Chem. 264: 12820–12825 (1989).

    PubMed  CAS  Google Scholar 

  36. A. Ando, K. Momomura, K. Tobe, R. Yamamoto-Honda, H. Sakura, Y. Tamori, Y. Kaburagi, O. Koshio, Y. Akanuma, Y. Yazaki, M. Kasuga, and T. Kadowaki, Enhanced insulin-induced mitogenesis and mitogen-activated protein kinase activities in mutant insulin receptors with substitution of two COOH-terminal tyrosine autophosphorylation sites by phenylalanine, J. Biol. Chem. 267: 12788–12796 (1992).

    PubMed  CAS  Google Scholar 

  37. M.G. Myers, Jr., J.M. Backer, K. Siddle, and M.F. White, The insulin receptor functions normally in Chinese hamster ovary cells after truncation of the C terminus, J. Biol. Chem. 266: 10616–10623 (1991).

    PubMed  CAS  Google Scholar 

  38. O.M. Rosen, After Insulin Binds, Science 237: 1452–1458 (1987).

    Article  PubMed  CAS  Google Scholar 

  39. C.R. Kahn, The molecular mechanism of insulin action, Ann, Rev. Med. 36: 429–451 (1985).

    Article  CAS  Google Scholar 

  40. M.F. White, and C.R. Kahn, The Enzymes, Vol. XVII, pp. 456–502, P.D. Boyer and E.G. Krebs, Eds., Academic Press, Orlando, FL (1986).

    Google Scholar 

  41. C.K. Sung, B.A. Maddux, Hawley, D.M. and I.D. Goldfine, Monoclonal antibodies mimic insulin activation of ribosomal protein S6 kinase without activation of insulin receptor tyrosine kinase, J. Biol. Chem. 264: 18951–18959 (1989).

    PubMed  CAS  Google Scholar 

  42. A. Debant, G. Ponzio, E. Clausen, and B. Rossi, Receptor cross-linking restores an insulin metabolic effect altered by mutation on tyrosine 1162 and tyrosine 1163, Biochemistry. 28: 14–17 (1989).

    Article  PubMed  CAS  Google Scholar 

  43. D.E. Moller, H. Benecke, and J.S. Flier, Biologic activities of naturally occurring human insulin receptor mutations. Evidence that metabolic effects of insulin can be mediated by a kinase-deficient insulin receptor mutant, J. Biol. Chem. 266:10995–11001 (1991).

    PubMed  CAS  Google Scholar 

  44. W. Gottschalk, The pathway mediating insulin’s effects on pyruvate dehydrogenase bypasses the insulin receptor tyrosine kinase, J. Biol. Chem. 266: 8814–8819 (1991).

    PubMed  CAS  Google Scholar 

  45. R.L.Hintz, A.V. Thorsson, G. Enberg, and K, Hall, IGFII binding on human lymphoid lines: Demonstration of a common high affinity receptor for insulin like peptides, Biochem. Biophys. Res. Commun. 127: 929–936 (1984).

    Google Scholar 

  46. H.A. Jonas, J.D. Newman, and L.C. Harrison, An atypical insulin receptor with high affinity for insulin-like growth factors copurified with placental insulin receptors, Proc. Natl. Acad. Sci. USA. \83: 4124–4128 (1986).

    Article  PubMed  CAS  Google Scholar 

  47. P.Misra, R.L. Hintz, and R. Rosenfeld, Structure and immunological characterization of insulin like growth factor II binding to IM-9 cells., J. Clin. Endocrinol Me tab. 63: 1400–1405 (1986).

    Article  CAS  Google Scholar 

  48. S.E.Tollefson, K. Thompson, and D.J. Petersen, Separation of the high affinity IGF I receptor from low affinity binding sites by affinity chromatography, J. Biol. Chem. 262: 16461–16469 (1987).

    Google Scholar 

  49. T.K. Alexandrides, and R.J. Smith, A novel fetal insulin-like growth factor (IGF) I receptor, J. Biol Chem. 264: 12922–12930 (1989).

    PubMed  CAS  Google Scholar 

  50. S.J.Casella, V.K. Han, A.J. D’Ercole, M.E. Svoboda, and J.J. Van Wyk, Insulin-like growth factor II binding to the type I somatomedin receptor: Evidence for two high affinity binding sites, J. Biol. Chem. 261: 9268–9273 (1986).

    PubMed  CAS  Google Scholar 

  51. M.A. Soos, and K. Siddle, Immunological relationships between receptors for insulin and insulin-like growth factor I, Biochem. J. 263: 553–563 (1989).

    PubMed  CAS  Google Scholar 

  52. M.A. Soos, J. Whittaker, R. Lammers, A. Ullrich, and K. Siddle, Receptors for insulin and insulin-like growth factor-I can form hybrid dimers, Biochem. J. 270: 383–390 (1990).

    PubMed  CAS  Google Scholar 

  53. M.A. Soos, C.E. Field, and K. Siddle, Purified hybrid insulin/insulin-like growth factor-I receptors bind insulin-like growth factor-I, but not insulin, with high affinity, Biochem. J. 290: 419–426 (1991).

    Google Scholar 

  54. C.P. Moxham, V. Duronio, and S. Jacobs, Insulin-like growth factor I receptor ß-subunit heterogeneity, J. Biol. Chem. 264: 13238–13244 (1989).

    PubMed  CAS  Google Scholar 

  55. J.E. Chin, J.M. Tavare, L. Ellis, and R.A. Roth, Evidence for hybrid rodent and human insulin receptors in transfected cells, J. Biol. Chem. 266: 15587–15590 (1991).

    PubMed  CAS  Google Scholar 

  56. R.S. Garofalo, and B. Barenton, Functional and immunological distinction between insulin-like growth factor I receptor subtypes in KB cells, J. Biol. Chem. 267: 11470–11475 (1992).

    PubMed  CAS  Google Scholar 

  57. A.L. Frattali and J.E. Pessin, Relationship between a subunit ligand occupancy and ß subunit autophosphorylation in insulin/insulin-like growth factor-1 hybrid receptors, J. Biol. Chem. 268: 7393–7400 (1993).

    PubMed  CAS  Google Scholar 

  58. B. Moss, O. Elroy-Stein, T. Mizukami, W.A. Alexander, and T.R. Fuerst, New mammalian expression vectors, Nature. 348: 91–92 (1990).

    Article  PubMed  CAS  Google Scholar 

  59. A.L. Frattali, J.L. Treadway, and J.E. Pessin, Transmembrane signaling by the human insulin receptor kinase, J. Biol. Chem. 267: 19521–19528 (1992).

    PubMed  CAS  Google Scholar 

  60. J. Lee, T. O’Hare, P.F. Pilch, and S.E. Shoelson, Insulin receptor autophosphorylation occurs asymmetrically, J. Biol. Chem. 268: 4092–4098 (1993).

    PubMed  CAS  Google Scholar 

  61. J.L. Treadway, B.D. Morrison, M.A. Soos, K. Siddle, J. Olefsky, A. Ullrich, D.A. McClain, and J.E. Pessin, Transdominant inhibition of tyrosine kinase activity in mutant insulin/inulin-like growth factor I hybrid receptors, Proc. Natl. Acad. Sci. ,USA. 88:214–218 (1991).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pessin, J.E. (1994). Molecular Properties of Insulin/IGF-1 Hybrid Receptors 4th International Symposium on Insulin, IGFs and Their Receptors. In: Le Roith, D., Raizada, M.K. (eds) Current Directions in Insulin-Like Growth Factor Research. Advances in Experimental Medicine and Biology, vol 343. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2988-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2988-0_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6301-9

  • Online ISBN: 978-1-4615-2988-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics