Skip to main content

Endoplasmic Reticulum and the Control of Ca2+ Homeostasis

  • Chapter
Endoplasmic Reticulum

Part of the book series: Subcellular Biochemistry ((SCBI,volume 21))

Abstract

Control of Ca2+ homeostasis is one of the fundamental activities of eukaryotic cells. In the extracellular medium the concentration of the free ion is maintained in the millimolar range whereas in the cytosol the resting value is approximately four orders of magnitude lower, yet the total calcium content per cell amounts to several millimoles per liter. This means that most of this calcium is not free, but bound to appropriate molecules and/or segregated within intracellular organelles. At each given time, the distribution of Ca2+ among the segregated, the cytosolic, and the extracellular compartments is the result of a complex, dynamic equilibrium that relies on the coordinated activation of specific pumps, transporters, and channels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Arber, S., Krause, K.-H., and Caroni, P., 1992, s-Cyclophilin is retained intracellularly via a unique COOH-terminal sequence and colocalizes with the calcium storage protein calreticulin, J. Cell Biol. 116:113–125.

    Article  PubMed  CAS  Google Scholar 

  • Baksh, S., and Michalak, M., 1991, Expression of calreticulin in Escherichia coli and identification of its Ca2+ binding domains, J. Biol. Chem. 266:21458–21465.

    PubMed  CAS  Google Scholar 

  • Berridge, M. J., 1990, Calcium oscillations, J. Biol. Chem. 265:9583–9586.

    PubMed  CAS  Google Scholar 

  • Berridge, M. J., 1993, Inositol trisphosphate and calcium signalling, Nature 361:315–325.

    Article  PubMed  CAS  Google Scholar 

  • Berridge, M. J., and Irvine, R. F., 1984, Inositol trisphosphate, a novel second messenger in cellular signal transduction, Nature 312:315–321.

    Article  PubMed  CAS  Google Scholar 

  • Berridge, M., and Moreton, R. B., 1991, Calcium waves and spirals, Curr. Biol. 1:296–297.

    Article  PubMed  CAS  Google Scholar 

  • Booth, C., and Koch, G. L. E., 1989, Perturbation of cellular calcium induces secretion of lumenal ER proteins, Cell 59:729–737.

    Article  PubMed  CAS  Google Scholar 

  • Brorson, J. R., Bleakman, D., Gibbons, S. J., and Miller, R. J., 1991, The properties of intracellular Ca2+ stores in cultured rat cerebellar neurons, J. Neurosci. 12:127–138.

    Google Scholar 

  • Campbell, K. P., 1986, Protein components and their roles in sarcoplasmic reticulum function, in: Sarcoplasmic Reticulum in Muscle Physiology (M. L. Entman and W. B. Van Winkle, eds.), pp. 65–99, CRC Press, Boca Raton, Fla.

    Google Scholar 

  • Carafoli, E., 1987, Intracellular calcium homeostasis, Annu. Rev. Biochem. 56:395–433.

    Article  PubMed  CAS  Google Scholar 

  • Chyn, T. L., Martonosi, A. N., Morimoto, T., and Sabatini, D. D., 1979, In vitro synthesis of the Ca2+ transport ATPase by ribosomes bound to sarcoplasmic reticulum membranes, Proc. Natl. Acad. Sci. USA 76:1241–1245.

    Article  PubMed  CAS  Google Scholar 

  • Dabora, S. L., and Sheetz, M. P., 1988, The microtubule-dependent formation of a tubulovesicular network with characteristics of the ER from cultured cell extracts, Cell 54:27–35.

    Article  PubMed  CAS  Google Scholar 

  • Ellisman, M. H., Deerinck, T. J., Ouyang, Y., Beck, C. F., Tanksley, S. J., Walton, P. D., Airey, J. A., and Sutko, J. L., 1990, Identification and localization of ryanodine binding proteins in the avian central nervous system, Neuron 5:135–146.

    Article  PubMed  CAS  Google Scholar 

  • Ezerman, E. B., and Ishikawa, H., 1967, Differentiation of the sarcoplasmic reticulum and T-system in developing chick skeletal muscle in vitro, J. Cell Biol. 35:405–420.

    Article  PubMed  CAS  Google Scholar 

  • Fleischer, S., and Inui, M., 1989, Biochemistry and biophysics of excitation-contraction coupling, Annu. Rev. Biophys. Chem. 18:333–364.

    Article  CAS  Google Scholar 

  • Fliegel, L., Ohnishi, M., Carpenter, M. R., Khanna, V. H., Reinhart, A. F., Reithmeier, R. A. F., and MacLennan, D. H., 1987, Amino acid sequence of rabbit fast-twitch skeletal muscle calsequestrin deduced from cDNA and peptide sequencing, Proc. Natl. Acad. Sci. USA 84:1167–1171.

    Article  PubMed  CAS  Google Scholar 

  • Fliegel, L., Burns, K., MacLennan, D. H., Reithmeier, R. A. F., and Michalak, M., 1989a, Molecular cloning of the high affinity calcium binding protein (calreticulin) of skeletal muscle sarcoplasmic reticulum, J. Biol. Chem. 264:21522–21528.

    PubMed  CAS  Google Scholar 

  • Fliegel, L., Burns, K., Opas, M., and Michalak, M., 1989b, The high-affinity calcium binding protein of sarcoplasmic reticulum. Tissue distribution and homology with calregulin, Biochim. Biophys. Acta 982:1–8.

    Article  PubMed  CAS  Google Scholar 

  • Fliegel, L., Newton, E., Burns, K., and Michalak, M., 1990, Molecular cloning of cDNA encoding a 55 KDa multifunctional thyroid hormone binding protein of skeletal muscle sarcoplasmic reticulum, J. Biol. Chem. 265:15496–15502.

    PubMed  CAS  Google Scholar 

  • Foskett, J. K., Roifmans, C.M., and Wong, D., 1991, Activation of calcium oscillation by thapsigargin in parotid acinar cells, J. Biol. Chem. 266:2778–2782.

    PubMed  CAS  Google Scholar 

  • Franzini-Armstrong, C., Kenney, L. J., and Varriano-Marston, E., 1987, The structure of calsequestrin in triads of vertebrate skeletal muscle: A deep-etch study, J. Cell Biol. 105:49–56.

    Article  PubMed  CAS  Google Scholar 

  • Furuichi, T., Yoshikawa, S., Myawaki, A., Wada, K., Maeda, N., and Mikoshiba, K., 1989, Primary structure and functional expression of the inositol 1,4,5-trisphosphate-binding protein P400, Nature 342:32–38.

    Article  PubMed  CAS  Google Scholar 

  • Galione, A., 1992, Ca2+-induced Ca2+ release and its modulation by cyclic ADP-ribose, Trends Pharmacol Sci. 13:356–360.

    Article  Google Scholar 

  • Giannini, G., Clementi, E., Ceci, R., Marziali, G., and Sorrentino, V., 1992, Identification of a broadly expressed ryanodine receptor-Ca2+ channel regulated by TGFβ, Science 257:91–94.

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto, S., Bruno, B., Lew, D. P., Pozzan, T., Volpe, P., and Meldolesi, J., 1988, Immunocytochemistry of calciosomes in liver and pancreas, J. Cell Biol. 107:2524–2531.

    Google Scholar 

  • Jorgensen, A. O., Shen, A.-C. I., and Campbell, K. P., 1985, Ultrastructural localization of calsequestrin in adult rat atrial and ventricular muscle cells, J. Cell Biol. 101:257–268.

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen, A. O., Broderick, R., Somlyo, A. P., and Somlyo, A. V., 1988, Two structurally distinct calcium storage sites in rat cardiac sarcoplasmic reticulum: An electron microprobe analysis study, Circ. Res. 63:1060–1069.

    Article  PubMed  CAS  Google Scholar 

  • Krause, K. H., Simmerman, H. K. B., Jones, L. R., and Campbell, K. P., 1990, Sequence similarity of calreticulin with a Ca2+ binding protein that co-purifies with an Ins(l,4,5)P3-sensitive Ca2+ store in HL-60 cells, Biochem. J. 270:545–548.

    PubMed  CAS  Google Scholar 

  • Lee, C., and Chen, L. B., 1988, Dynamic behavior of endoplasmic reticulum in living cells, Cell 54:37–46.

    Article  PubMed  CAS  Google Scholar 

  • Lipscombe, D., Madison, D. V., Poenie, M., Reuter, H., Tsien, R. Y., and Tsien, R. W., 1988, Spatial distribution of calcium channels and cytosolic calcium transients in growth cones and cell bodies of sympathetic neurons, Proc. Natl. Acad. Sci. USA 85:2398–2402.

    Article  PubMed  CAS  Google Scholar 

  • Llano, I., Dreessen, J., Kano, M., and Konnerth, A., 1991, Intradendritic release of calcium induced by glutamate in cerebellar Purkinje cells, Neuron 7:577–583.

    Article  PubMed  CAS  Google Scholar 

  • Lytton, J., Westlin, M., and Hanley, M. R., 1991, Thapsigargin inhibits the sarcoplasmic or endoplasmic reticulum Ca-ATPase family of calcium pumps, J. Biol. Chem. 266:17067–17071.

    PubMed  CAS  Google Scholar 

  • Macer, D. R: J., and Koch, G. L. E., 1988, Identification of a set of calcium-binding proteins in reticuloplasm, the luminal content of the endoplasmic reticulum, J. Cell Sci. 91:61–70.

    PubMed  CAS  Google Scholar 

  • McPherson, P.S., and Campbell, K. P., 1990, Solubilization and biochemical characterization of the high affinity [3H] ryanodine receptor from rabbit brain membranes, J. Biol. Chem. 265:18454–18460.

    PubMed  CAS  Google Scholar 

  • McPherson, P. S., Kim, Y.-K., Valdivia, H., Knudson, C. M., Takekura, H., Franzini-Armstrong, C., Coronado, R., and Campbell, K. P., 1991, The brain ryanodine receptor: A caffeinesensitive calcium release channel, Neuron 7:17–25.

    Article  PubMed  CAS  Google Scholar 

  • McPherson, S. M., McPherson, P. S., Matheus, L., Campbell, K. P., and Longo, F. J., 1992, Cortical localization of a calcium release channel in sea urchin eggs, J. Cell Biol. 116:1111–1121.

    Article  PubMed  CAS  Google Scholar 

  • Maeda, N., Niinobe, M., Inoue, I., and Mikoshiba, K., 1989, Developmental expression and intracellular location of P400 protein characteristic of Purkinje cells in the mouse cerebellum, Dev. Biol. 133:67–76.

    Article  PubMed  CAS  Google Scholar 

  • Meldolesi, J., 1992, Multivarious IP3 receptors, Curr. Biol. 2:393–394.

    Article  PubMed  CAS  Google Scholar 

  • Meldolesi, J., Madeddu, L., and Pozzan, T., 1990, Intracellular Ca2+ storage organelles in nonmuscle cells: Heterogeneity and functional assignment, Biochim. Biophys. Acta 1055:130–140.

    Article  PubMed  CAS  Google Scholar 

  • Michalak, M., Milner, R. E., Burns, K., and Opas, M., 1992, Calreticulin, Biochem. J. 285:681–692.

    PubMed  CAS  Google Scholar 

  • Mignery, G. A., and Südhof, T. C., 1990, The ligand binding site and transduction mechanism in the inositol 1,4,5-trisphosphate receptor, EMBO J. 9:3893–3898.

    PubMed  CAS  Google Scholar 

  • Mignery, G. A., Südhof, T. C., Takei, K., and De Camilli, P., 1989, Putative inositol 1,4,5-trisphosphate receptor similar to ryanodine receptor, Nature 342:192–195.

    Article  PubMed  CAS  Google Scholar 

  • Missiaen, L., De Smedt, H., Droogmans, G., and Casteels, R., 1992, Ca2+ release induced by inositol 1,4,5-trisphosphate is a steady-state phenomenon controlled by luminal Ca2+ in permeabilized cells, Nature 357:599–601.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, R. D., Simmerman, H. K. B., and Jones, L. R., 1988, Calcium binding effects on protein conformation and protein interactions of canine cardiac calsequestrin, J. Biol. Chem. 263:1376–1381.

    PubMed  CAS  Google Scholar 

  • Miyawaki, A., Furuichi, T., Ryou, S., Nakagawa, T., Saitoh, T., and Mikoshiba, K., 1991, Structure-function relationships of the mouse inositol 1,4,5-trisphosphate receptor, Proc. Natl. Acad. Sci. USA 88:4911–4915.

    Article  PubMed  CAS  Google Scholar 

  • Moreno, S. N. J., Docampo, R., and Vercesi, A. E., 1992, Calcium homeostasis in procyclic and bloodstream forms of Trypanosoma brucei, J. Biol. Chem. 267:6020–6026.

    PubMed  CAS  Google Scholar 

  • Nguyen, Van, P. N., Peter, F., and Söling, H.-D., 1989, Four intracisternal calcium-binding glycoproteins from rat liver microsomes with high affinity for calcium, J. Biol. Chem. 264:17494–17501.

    Google Scholar 

  • Otsu, H., Yamamoto, A., Maeda, N., Mikoshiba, K., and Tashiro, Y., 1990, Immunogold localization of inositol 1,4,5-trisphosphate (InsP3) receptor in mouse cerebellar Purkinje cells using three monoclonal antibodies, Cell Struct. Fund. 15:163–173.

    Article  CAS  Google Scholar 

  • Otsu, K., Willard, H. F., Khanna, V. K., Zorzato, F., Green, N. M., and MacLennan, D. H., 1990, Molecular cloning of cDNA encoding the Ca2+ release channel (ryanodine receptor) of rabbit cardiac muscle sarcoplasmic reticulum, J. Biol. Chem. 265:13472–13483.

    PubMed  CAS  Google Scholar 

  • Papp, B., Enyedi, A., Kovacs, T., Sarkadi, B., Wuytack, F., Thastrup, O., Gardos, G., Bredoux, R., Levy-Toledano, S., and Enouf, J., 1991, Demonstration of two forms of calcium pumps by thapsigargin inhibition and radioimmunoblotting in platelet membrane vesicles, J. Biol. Chem. 266:14593–14596.

    PubMed  CAS  Google Scholar 

  • Pelham, H. R. B., 1989, Control of protein exit from the endoplasmic reticulum, Annu. Rev. Cell Biol. 5:1–23.

    Article  PubMed  CAS  Google Scholar 

  • Peter, F., Nguyen Van, P., and Söling, H. D., 1992, Different sorting of KDEL proteins in rat liver, J. Biol. Chem. 267:10631–10637.

    PubMed  CAS  Google Scholar 

  • Petersen, O. H., and Wakui, M., 1990, Oscillating intracellular Ca2+ signals evoked by activation of receptors linked to inositol lipid hydrolysis: Mechanism of generation, J. Membr. Biol. 118:93–105.

    Article  PubMed  CAS  Google Scholar 

  • Pietrobon, D., Di Virgilio, F., and Pozzan, T., 1990, Structural and functional aspects of calcium homeostasis in eukaryotic cells, Eur. J. Biochem. 193:599–622.

    Article  PubMed  CAS  Google Scholar 

  • Porter, K. R., and Palade, G. E., 1957, Studies on the sarcoplasmic reticulum. III. Its form and distribution in striated muscle cells, J. Biophys. Biochem. Cytol. 3:269–300.

    Article  PubMed  CAS  Google Scholar 

  • Rios, E., Ma, J., and Gonzales, A., 1991, The mechanical hypothesis of excitation-contraction (EC) coupling in skeletal muscle, J. Muscle Res. Cell Motil. 12:127–135.

    Article  PubMed  CAS  Google Scholar 

  • Rizzuto, R., Simpson, A. W. M., Brini, M., and Pozzan, T., 1992, Rapid changes of mitochondrial Ca2+ revealed by specifically targeted recombinant aequorin, Nature 358:325–327.

    Article  PubMed  CAS  Google Scholar 

  • Rusakov, D. A., Podini, P., Villa, A., and Meldolesi, J., 1993, Tridimensional organization of Purkinje neuron cisternal stacks, a specialized endoplasmic reticulum subcompartment rich in inositol 1,4,5-trisphosphate receptors, J. Neurocytol. 22:273–282.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, I. M., and Burgoyne, R. D., 1991, Characterization of distinct inositol 1,4,5-trisphosphate-sensitive and caffeine-sensitive calcium stores in digitonin-permeabilised adrenal chromaffin cells, J. Neurochem. 56:1587–1593.

    Article  PubMed  CAS  Google Scholar 

  • Ross, C. A., Meldolesi, J., Milner, T. A., Satoh, T., Supattapone, S., and Snyder, S. H., 1989, Inositol 1,4,5-trisphosphate receptor localized to endoplasmic reticulum in cerebellar Purkinje neurons, Nature 339:468–470.

    Article  PubMed  CAS  Google Scholar 

  • Satoh, T., Ross, C.A., Villa, A., Supattapone, S., Pozzan, T., Snyder, S. H., and Meldolesi, J., 1990, The inositol 1,4,5-trisphosphate receptor in cerebellar Purkinje cells: Quantitative immunogold labeling reveals concentration in an ER subcompartment, J. Cell Biol. 111:615–624.

    Article  PubMed  CAS  Google Scholar 

  • Scott, B. T., Simmerman, H. K. B., Collins, J. H., Nadal-Ginard, B., and Jones, L. R., 1988, Complete amino acid sequence of canine cardiac calsequestrin deduced by cDNA cloning, J. Biol. Chem. 263:8958–8964.

    PubMed  CAS  Google Scholar 

  • Sitia, R., and Meldolesi, J., 1992, The endoplasmic reticulum: A dynamic patchwork of specialized subregions, Mol. Biol Cell 3:1067–1072.

    PubMed  CAS  Google Scholar 

  • Smith, M. J., and Koch, G. L. E., 1989, Multiple zones in the sequence of calreticulin (CRP 55, calregulin, HACBP), a major calcium binding ER/SR protein, EMBO J. 8:3581–3586.

    PubMed  CAS  Google Scholar 

  • Somlyo, A. V., Bond, M., Shuman, H., and Somlyo, A. P., 1986, Electron-probe X ray microanalysis of in situ calcium and other ion movements in muscle and liver, Ann. N.Y. Acad. Sci. 483:229–240.

    Article  PubMed  CAS  Google Scholar 

  • Streb, H., Irvine, R. F., Berridge, M. J., and Schultz, I., 1983, Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate, Nature 306:67–69.

    Article  PubMed  CAS  Google Scholar 

  • Supattapone, S., Worley, P. F., Baraban, J. M., and Snyder, S. H., 1988, Solubilization, purification and characterization of an inositol trisphosphate receptor, J. Biol. Chem. 263:1530–1534.

    PubMed  CAS  Google Scholar 

  • Suzuki, C. K., Bonifacino, J. S., Lin, A. Y., Davis, M. M., and Klausner, R. D., 1991, Regulating the retention of T cell receptor chain variants within the endoplasmic reticulum: Ca2+-dependent association with BiP, J. Cell Biol. 114:189–205.

    Article  PubMed  CAS  Google Scholar 

  • Takei, K., Stukenbrok, H., Metcalf, A., Mignery, G., Südhof, T., Volpe, P., and De Camilli, P., 1992, Ca2+ stores in Purkinje neurons: Endoplasmic reticulum subcompartments demonstrated by the heterogeneous distribution of the Ins-P3 receptor, Ca2+-ATPase and calsequestrin, J. Neurosci. 12:489–505.

    PubMed  CAS  Google Scholar 

  • Takeshima, H., Nishimura, S., Matsumoto, T., Ishida, H., Kangawa, K., Minamino, N., Matsu, H., Ueda, M., Hanaoka, M., Hirose, T, and Numa, S., 1989, Primary structure and expression from complementary DNA of skeletal muscle ryanodine receptor, Nature 339:439–445.

    Article  PubMed  CAS  Google Scholar 

  • Terasaki, M., and Jaffe, L. A., 1991, Organization of the sea urchin egg endoplasmic reticulum and its reorganization at fertilization, J. Cell Biol. 114:929–940.

    Article  PubMed  CAS  Google Scholar 

  • Thastrup, O., Cullen, P. J., Drobak, B. K., Hanley, M. R., and Dawson, A. P., 1990, Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2+-ATPase, Proc. Natl. Acad. Sci. USA 87:2466–2470.

    Article  PubMed  CAS  Google Scholar 

  • Thayer, S. A., Hirning, L. D., and Miller, R. J., 1988a, The role of caffeine-sensitive calcium stores in the regulation of the intracellular free calcium concentration in rat sympathetic neurons in vitro, Mol. Pharmacol. 34:664–673.

    PubMed  CAS  Google Scholar 

  • Thayer, S.A., Perney, T. M., and Miller, R. J., 1988b, Regulation of calcium homeostasis in sensory neurons by bradykinin, J. Neurosci. 8:4089–4097.

    PubMed  CAS  Google Scholar 

  • Thomas, K., Navarro, J., Benson, R. J. J., Campbell, K. P., Rotundo, R. L., and Fine, R. E., 1989, Newly synthesized calsequestrin, destined for the sarcoplasmic reticulum, is contained in early/intermediate Golgi-derived clathrin-coated vesicles, J. Biol Chem. 264:3140–3145.

    PubMed  CAS  Google Scholar 

  • Treves, S., DeMattei, M., Lanfredi, M., Villa, A., Green, N. M., MacLennan, D., Meldolesi, J., and Pozzan, T., 1990, Calreticulin is a candidate for a calsequestrin-like function in Ca2+-storage compartments (calciosomes) of liver and brain, Biochem. J. 271:473–480.

    PubMed  CAS  Google Scholar 

  • Tsien, R. W., and Tsien, R. Y., 1990, Calcium channels, stores and oscillations, Annu. Rev. Cell Biol. 6:715–760.

    Article  PubMed  CAS  Google Scholar 

  • Van Delden, C., Favre, C., Spat, A., Cerny, E., Krause, K.-H., and Lew, D. P., 1992, Purification of an inositol 1,4,5-trisphosphate-binding, calreticulin-containing intracellular compartment of HL-60 cells, Biochem. J. 281:651–656.

    PubMed  Google Scholar 

  • Villa, A., Podini, P., Clegg, D. O., Pozzan, T., and Meldolesi, J., 1991, Intracellular Ca2+ stores in chicken Purkinje neurons: Differential distribution of the low affinity-high capacity calcium binding protein, calsequestrin, of Ca2+ ATPase and of the ER lumenal protein, BiP, J. Cell Biol. 113:779–791.

    Article  PubMed  CAS  Google Scholar 

  • Villa, A., Sharp, A. H., Racchetti, G., Podini, P., Bole, D. G., Dunn, W. A., Pozzan, T., Snyder, S. H., and Meldolesi, J., 1992, The endoplasmic reticulum of Purkinje neuron body and dendrites: Molecular identity and specialization for Ca2+ transport, Neuroscience 49:467–477.

    Article  PubMed  CAS  Google Scholar 

  • Villa, A., Podini, P., Panzeri, M. C, Söling, H. D., Volpe P., and Meldolesi, J., 1993, The endoplasmic-sarcoplasmic reticulum of smooth muscle fibers, J. Cell Biol. 121:1041–1051.

    Article  PubMed  CAS  Google Scholar 

  • Volpe, P., Krause, K.-H., Hashimoto, S., Zorzato, F., Pozzan, T., Meldolesi, J., and Lew, D. P., 1988, “Calciosome”, a cytoplasmic organelle: The inositol 1,4,5-trisphosphate-sensitive Ca2+ store of non muscle cells? Proc. Natl. Acad. Sci. USA 85:1091–1095.

    Article  PubMed  CAS  Google Scholar 

  • Volpe, P., Alderson-Lang, B. H., Madeddu, L., Damiani, E., Collins, J. H., and Margreth, A., 1990, Calsequestrin, a component of the inositol 1,4,5-trisphosphate-sensitive Ca2+ store of chicken cerebellum, Neuron 5:713–721.

    Article  PubMed  CAS  Google Scholar 

  • Volpe, P., Villa, A., Damiani, E., Sharp, A. H., Podini, P., Snyder, S. H., and Meldolesi, J., 1991, Heterogeneity of microsomal Ca2+ stores in chicken Purkinje neurons, EMBO J. 10:3183–3189.

    PubMed  CAS  Google Scholar 

  • Volpe, P., Villa, A., Podini, P., Martini, A., Nori, A., Panzeri, M. C., and Meldolesi, J., 1992, The ER-SR connection. Distribution of the endoplasmic reticulum markers in the sarcoplasmic reticulum of skeletal muscle fibers, Proc. Natl. Acad. Sci. USA 89:6142–6146.

    Article  PubMed  CAS  Google Scholar 

  • Wada, I., Rindress, D., Cameron, P. H., Ou, W. J., Doherty, H. H., Louvard, D., Bell, D., Thomas, D. Y., and Bergeron, J. J. M., 1991, The SSR and associated calnexin are major calcium binding proteins of the endoplasmic reticulum membrane, J. Biol. Chem. 266:19599–19610.

    PubMed  CAS  Google Scholar 

  • Walton, P. D., Airey, J. A., Sutko, J. L., Beck, C. R, Mignery, G. A., Südhof, T. C., Deerinck, T. J., and Ellisman, M. H., 1991, Ryanodine and inositol trisphosphate receptors coexist in avian cerebellar Purkinje neurons, J. Cell Biol. 113:1145–1157.

    Article  PubMed  CAS  Google Scholar 

  • Wileman, T., Kane, L. P., Carson, G. R., and Terhorst, C., 1991, Depletion of cellular calcium accelerates protein degradation in the endoplasmic reticulum, J. Biol. Chem. 266:4500–4507.

    PubMed  CAS  Google Scholar 

  • Wuytack, F., Raeymaekers, L., Verbist, J., Jones, L. R., and Casteels, R., 1987, Smooth-muscle endoplasmic reticulum contains a cardiac-like form of calsequestrin, Biochem. Biophys. Acta 899:151–158.

    Article  PubMed  CAS  Google Scholar 

  • Yuan, S., Arnold, W., and Jorgensen, A. O., 1991, Biogenesis of transverse tubules and triads: Immunolocalization of the 1,4-dihydropyridine receptor, TS28, and the ryanodine receptor in rabbit skeletal muscle developing in situ, J. Cell Biol. 112:289–301.

    Article  PubMed  CAS  Google Scholar 

  • Zacchetti, D., Clementi, E., Fasolato, C., Lorenzon, P., Zottini, M., Grohovaz, F., Fumagalli, G., Pozzan, T., and Meldolesi, J., 1991, Intracellular Ca2+ pools in PC12 cells. A unique, rapidly exchanging pool is sensitive to both inositol 1,4,5 trisphosphate and caffeine-ryanodine, J. Biol. Chem. 266:20152–20158.

    PubMed  CAS  Google Scholar 

  • Zorzato, F., Fujii, J., Otsu, K., Phillips, M., Green, N. M., Lai, F. A., Meissner, G., and MacLennan, D. H., 1990, Molecular cloning of cDNA encoding human and rabbit forms of the Ca2+ release channel (ryanaodine receptor) of skeletal muscle, Biol. Chem. 265:2244–2256.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Meldolesi, J., Villa, A. (1993). Endoplasmic Reticulum and the Control of Ca2+ Homeostasis. In: Borgese, N., Harris, J.R. (eds) Endoplasmic Reticulum. Subcellular Biochemistry, vol 21. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2912-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2912-5_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6263-0

  • Online ISBN: 978-1-4615-2912-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics