Skip to main content

A Step-Frequency Radar System for Broadband Microwave Inverse Scattering and Imaging

  • Chapter
Review of Progress in Quantitative Nondestructive Evaluation

Abstract

Step-frequency radar (SFR) is an attractive alternative to impulse radar for obtaining broadband time-domain scattering data [1]. Through the use of an inverse Fourier transform, the SFR frequency-domain (magnitude and phase) data may be converted into a synthetic time-domain pulse. Time-domain inverse scattering imaging techniques [1–7], , used in conjunction with SFR data collection, may be used to generate images of the permittivity and conductivity profiles of scattering objects, and can provide a useful diagnostic and investigative tool.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. H. Weedon, “Broadband microwave inverse scattering: Theory and experiment.” Ph.D. dissertation, University of Illinois at Urbana-Champaign, 1994.

    Google Scholar 

  2. W. H. Weedon and W. C. Chew, “Time-domain inverse scattering using the local shape function (LSF) method,” Inverse Probl., vol. 9, pp. 551–564, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  3. M. Moghaddam, “Forward and inverse scattering problems in the time domain.” Ph.D. dissertation, University of Illinois at Urbana-Champaign, 1991.

    Google Scholar 

  4. M. Moghaddam, W. C. Chew, and M. Oristaglio, “Comparison of the Born iterative method and Tarantola’s method for an electromagnetic time-domain inverse problem,” Int. J. Imaging Syst. Technol., vol. 3, pp. 318–333, 1991.

    Article  Google Scholar 

  5. M. Moghaddam and W. C. Chew, “Nonlinear two-dimensional velocity profile inversion using time domain data,” IEEE Trans. Geosci. Remote Sensing, vol. 30, Jan. 1992.

    Google Scholar 

  6. M. Moghaddam and W. C. Chew, “Study of some practical issues in inversion with the Born iterative method using time-domain data,” IEEE Trans. Antennas Propagat., vol. 41, no. 2, pp. 177–184, 1993.

    Article  Google Scholar 

  7. A. Tarantola, “The seismic reflection inverse problem,” in Inverse Problems of Acoustic and Elastic Waves (F. Santosa, Y. H. Pao, W. Symes, and C. Holland, eds.), SIAM, Philadelphia, 1984.

    Google Scholar 

  8. G. H. Bryant, Principles of Microwave Measurements. London: Peter Peregrinus Ltd., 1988.

    Google Scholar 

  9. J. A. Landt, “Typical time domain measurement configurations,” in Time Domain Measurements in Electromagnetics (E. K. Miller, ed.), New York: Van Nostrand Reinhold, 1986.

    Google Scholar 

  10. R. Lawton, S. Riad, and J. Andrews, “Pulse & time-domain measurements,” Proc. IEEE, vol. 74, pp. 77–81, 1986.

    Article  Google Scholar 

  11. W. H. Weedon, W. C. Chew, and C. A. Ruwe, “Step-frequency radar imaging for NDE and GPR applications,” in SPIE Proceedings: Advanced Microwave and Millimeter Wave Detectors, vol. 2275, (San Diego, CA), 1994.

    Google Scholar 

  12. A. J. Devaney, “A filtered backpropagation algorithm for diffraction tomography,” Ultrason. Imaging, vol. 4, pp. 336–360, 1982.

    Article  Google Scholar 

  13. A. J. Devaney, “A computer simulation study of diffraction tomography,” IEEE Trans. Biomed. Eng., vol. BME-30, pp. 377–386, 1983.

    Article  Google Scholar 

  14. A. C. Kak, “Computerized tomography with x-ray, emission and ultrasound sources,” Proc. IEEE, vol. 67, no. 9, pp. 1245–1272, 1979.

    Article  Google Scholar 

  15. W. C. Chew, Waves and Fields in Inhomogeneous Media. New York: Van Nostrand, 1990.

    Google Scholar 

  16. Y.-M. Wang and W. C. Chew, “An iterative solution of two-dimensional electromagnetic inverse scattering problem,” Int. J. Imaging Syst. Technol., vol. 1, pp. 100–108, 1989.

    Article  Google Scholar 

  17. R. E. Kleinman and P. M. van den Berg, “Nonlinearized approach to profile inversion,” Int. J. Imaging Syst. Technol., vol. 2, pp. 119–126, 1990.

    Article  Google Scholar 

  18. N. Joachimowicz, C. Pichot, and J.-P. Hugonin, “Inverse scattering: an iterative numerical method for electromagnetic imaging,” IEEE Trans. Antennas Propagat, vol. AP-39, no. 12, pp. 1742–1752, 1991.

    Article  Google Scholar 

  19. W. C. Chew and G. P. Otto, “Microwave imaging of multiple conducting cylinders using local shape functions,” IEEE Microwave Guided Wave Lett., vol. 2, pp. 284–286, July 1992.

    Article  Google Scholar 

  20. G. P. Otto and W. C. Chew, “Microwave inverse scattering-local shape function imaging for improved resolution of strong scatterers,” IEEE Trans. Microwave Theory Tech., vol. 42, no. 1, pp. 137–141, 1994.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Plenum Press, New York

About this chapter

Cite this chapter

Weedon, W.H., Chew, W.C., Ruwe, C.A. (1995). A Step-Frequency Radar System for Broadband Microwave Inverse Scattering and Imaging. In: Thompson, D.O., Chimenti, D.E. (eds) Review of Progress in Quantitative Nondestructive Evaluation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1987-4_79

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1987-4_79

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5819-0

  • Online ISBN: 978-1-4615-1987-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics