Skip to main content

Central Hypoxic Chemoreceptors in the Ventrolateral Medulla and Caudal Hypothalamus

  • Chapter
Modeling and Control of Ventilation

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 393))

Abstract

Even though hypoxia is known to depress the activity of many central nervous system neurons (11,12,18), CNS hypoxia increases ventilation and cardiovascular drive under some experimental and clinical conditions (1,5,8). Central hypoxia elicits the cerebral ischemic response which involves an increase in sympathetic nerve activity resulting in elevated arterial pressure, heart rate and ventricular contractility (1,8). Moreover, perfusion of hypoxic blood to the brain of the awake goat while maintaining the isolated carotid body circulation normoxic results in a tachypnea (2). In addition, hyperventilation is evoked by systemic hypoxia in the awake rat (15), cat (13), dog (3), pony (10) and goat (2) after peripheral chemoreceptor denervation. These studies suggest that central receptors exist which increase cardiorespiratory drive when stimulated by hypoxia. The recent focus of this laboratory has been to determine if hypoxia exerts a direct effect upon neurons in brain sites involved in control of the cardiovascular and respiratory systems. Our approach was to examine the in vivo and in vitro electrophysiological responses of single neurons to hypoxia (6,7,14). Our findings support the hypothesis that the inherent responses of neurons in the ventrolateral medulla (VLM) and caudal hypothalamus (CH) are involved in the coordinated response to hypoxia observed in the intact animal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dampney, R.A.L., M. Kumada, and D.J. Reis. Central neural mechanisms of the cerebral ischemic response: characterization, effect of brainstem and cranial nerve transections, and simulation by electrical stimulation of restricted regions of the medulla oblongata in rabbit. Circ. Res. 45: 48–62, 1979.

    Article  PubMed  CAS  Google Scholar 

  2. Daristotle, L., M.J. Engwall, W. Niu, and G.E. Bisgard. Ventilatory effects and interactions with change in Pao2 in awake goats. J. Appl. Physiol. 71:1254–1260, 1991.

    PubMed  CAS  Google Scholar 

  3. Davenport, H.W., G. Brewer, A.H. Chambers and S. Goldschmidt. The respiratory responses to anoxemia of unanesthetized dogs with chronically denervated aortic and carotid chemoreceptors and their causes. Am. J. Physiol. 148:406–416, 1947.

    PubMed  CAS  Google Scholar 

  4. Dean, J.B, D.A. Bayliss, J.T. Erickson, L.W. Lawing and D.E. Millhorn. Depolarization and stimulation of neurons in nucleus tractus solitarii by carbon dioxide does not require chemical synaptic input. Neuorsci. 36:207–216, 1990.

    Article  CAS  Google Scholar 

  5. Dempsey, J.A. and R.B. Schoene. Pulmonary system adaptations to high altitude, In: Pumonary and Critical Care Medicine, Vol I (C), edited by D. Dantzker, R.B. George, R.A. Matthay and H.Y. Reynolds, New York: Mosby Year Book, 1993.

    Google Scholar 

  6. Dillon, G.H. and T.G. Waldrop. In vitro responses of caudal hypothalamic neurons to hypoxia and hypercapnia. Neurosci. 51:941–950, 1992.

    Article  CAS  Google Scholar 

  7. Dillon, G.H. and T.G. Waldrop. Responses of feline caudal hypothalamic cardiorespiratory neurons to hypoxia and hypercapnia. Exp. Brain Res. 96:260–272, 1993.

    Article  PubMed  CAS  Google Scholar 

  8. Downing, S.E., J.H. Mitchell and A.G. Wallace. Cardiovascular responses to ischemia, hypoxia, and hypercapnia of the central nervous system. Am. J. Physiol. 204:H881–H887, 1963.

    Google Scholar 

  9. Filiano, J.J. and H.C. Kinney. A perspective on neuropathologic findings in victims of the sudden infant death syndrome: the triple risk model. Biol. Neonate. 65:194–197, 1994.

    Article  PubMed  CAS  Google Scholar 

  10. Forster, H.V., G.E. Bisgard, B. Rasmussen, J.A. Orr, D.D. Buss and M. Manohar. Ventilatory control in peripheral chemoreceptor denervated ponies during chronic hypoxemia. J. Appl. Physiol. 41:878–885, 1976.

    PubMed  CAS  Google Scholar 

  11. LeBlond, J. and K. Krnjevic. Hypoxic changes in hippocampal neurons. J. Neurophysiol. 62:15–30, 1989.

    PubMed  Google Scholar 

  12. Luhmann, H.J. and U. Heinemann. Hypoxia-induced functional alterations in adult rat neocortex. J. Neurophysiol. 67:798–811, 1992.

    PubMed  CAS  Google Scholar 

  13. Miller, M.J. and S.M. Tenney. Hypoxia-induced tachypnea in carotid-deafferented cats. Respir. Physiol. 23:31–39, 1975.

    Article  PubMed  CAS  Google Scholar 

  14. Nolan, P.C. and T.G. Waldrop. In vivo and in vitro responses of neurons in the ventrolateral medulla to hypoxia. Brain Res. 630:101–114, 1993.

    Article  PubMed  CAS  Google Scholar 

  15. Olson, E.B. Jr. and J.A. Dempsey. Rat as a model for humanlike ventilatory adaptation to chronic hypoxia. J. Appl. Physiol. 44:763–769, 1978.

    PubMed  CAS  Google Scholar 

  16. Ross, C.A., D.A. Ruggiero, D.H. Park, T.H. Joh, A.F. Sved, J. Fernandez-Pardal, J.M. Saavedra and D.J. Reis. Tonic vasomotor control by the rostral ventrolateral medulla: effect of electrical or chemical stimulation of the area containing C1 adrenergic neurons on arterial pressure, heart rate and plasma catecholamines and vasopressin.J.Neurosci. 4:474–494, 1984.

    PubMed  CAS  Google Scholar 

  17. Ryan, J.W. and T.G. Waldrop. Hypoxic sensitive neurons in the caudal hypothalamus project to the periaqueductal gray. Resp. Physiol. 100: 185–194, 1995.

    Article  CAS  Google Scholar 

  18. Suzuki, R., T. Yamaguchi, Y. Inaba and H. Wagner. Microphysiology of selectively vulnerable neurons. Prog. Brain Res. 63:59–68, 1985.

    Article  PubMed  CAS  Google Scholar 

  19. Tenney, S.M. and L.C. Ou. Ventilatory response of decorticate and decerebrate cats to hypoxia and CO2. Resp. Physiol. 29:81–92, 1977.

    Article  CAS  Google Scholar 

  20. Waldrop, T.G. and J.P. Porter. Hypothalamic involvement in respiratory and cardiovascular regulation, In: Regulation of Breathing,2nd ed., edited by J.A. Dempsey and A.I. Pack, New York: Marcel Dekker, Inc., 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nolan, P.C., Dillon, G.H., Waldrop, T.G. (1995). Central Hypoxic Chemoreceptors in the Ventrolateral Medulla and Caudal Hypothalamus. In: Semple, S.J.G., Adams, L., Whipp, B.J. (eds) Modeling and Control of Ventilation. Advances in Experimental Medicine and Biology, vol 393. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1933-1_49

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1933-1_49

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5792-6

  • Online ISBN: 978-1-4615-1933-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics