Skip to main content

Troponin C — Troponin I Interactions and Molecular Signalling in Cardiac Myofilaments

  • Chapter
Molecular and Subcellular Cardiology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 382))

Abstract

This chapter describes a current perception of the molecular interactions regulating myofilament activity in heart cells. The focus is on the interaction between troponin-C (TnC), the Ca2+-receptor and troponin I (TnI), an inhibitory protein. It is this interaction that appears to form a molecular switch that turns on the thin filament. It will be seen that control of the actin-myosin reaction is not only through Ca2+-binding to TnC, but also through steric, cooperative and allosteric processes involving all of the main myofilament proteins-actin, myosin, tropomyosin (Tm), troponin T (TnT), TnC, and TnI. The process is modulated by covalent and non-covalent mechanisms. The process is altered in diverse myopathies and pathologies of the heart and is a target for pharmacological manipulation by a new class of inotropic agents, the “Ca2+-sensitizers”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Solaro RJ, Pan BS. Control and modulation of contractile activity of cardiac myofilaments, in Sperelakis N (ed):Physiology and Pathophysiology of the Heart Boston: Kluwer Academic Publishers; 1988:291–293

    Google Scholar 

  2. Moss RL. Ca2+ regulation of mechanical properties of striated muscle: mechanistic studies using extraction and replacement of regulatory proteins. Circ Res. 1992;70:865–884.

    Article  PubMed  CAS  Google Scholar 

  3. Allen DG, Kentish JC. The cellular basis of the length-tension relation in cardiac muscle. J Mol Cell Cardiol 1985;17:821–840.

    Article  PubMed  CAS  Google Scholar 

  4. Solaro RJ. Protein phosphorylation and the cardiac myofilaments. In: Solaro RJ, ed. Protein Phosphorylation in Heart. Boca Raton: CRC Press, Inc.; 1986:129–156.

    Google Scholar 

  5. Solaro RJ. Modulation of activation of cardiac myofilaments by beta-adrenergic agonists. In: Lee JA, Allen DG, eds. Modulation of Cardiac Calcium Sensitivity, Oxford: Oxford University Press; 1993:161–177.

    Google Scholar 

  6. Solaro RJ, Lee J, Kentish J, Allen DA. Differences in the response of adult and neonatal heart muscle to acidosis. Circ Res. 1988;63:779–787.

    Article  PubMed  CAS  Google Scholar 

  7. Westfall MV, Solaro RJ. Alterations in myofibrillar function and protein profiles following global ischemia in rat hearts. Circ Res. 1992;70:302–313.

    Article  PubMed  CAS  Google Scholar 

  8. Anderson PAW, Malouf NN, Oakeley A, Pagani ED, Allen PD. Troponin T isoform expression in humans: A comparison among normal and failing adult heart, fetal heart, and adult and fetal skeletal muscle. Circ Res. 1991;60:1226–1233.

    Article  Google Scholar 

  9. Tanigawa G, Jarcho JA, Kass S, Solomon SD, Vosberg JG, Seidman JG, Seidman CE. A molecular basis for familial hypertrophic cardiomyopathy: an α/β cardiac myosin heavy chain hybrid gene. Cell. 1990; 622:991–998.

    Article  Google Scholar 

  10. Thierfelder L, Watkins H, MacRae C. Alpha-tropomyosin and cardiac troponin T mutations cause familial hypertrophic cardiomyopathy: a disease of the sarcomere. Cell. 1994;77:701–712.

    Article  PubMed  Google Scholar 

  11. Fujino K, Sperelakis N, Solaro RJ. Sensitization of dog and guinea pig cardiac myofilaments to Ca2+-activation and inotropic effect of pimobendan: Comparison with milrinone. Circ Res. 1988;63:911–922.

    Article  PubMed  CAS  Google Scholar 

  12. Mori M, Takeuchi M, Takaoka H, Hata K, Yamakawa H. New Ca2+ sensitizer, MCI-154, reduces myocardial oxygen consumption for non-mechanical work in diseased human hearts. Circulation. 1994;92(4) Part 2, I–217.

    Google Scholar 

  13. Millar N, Homsher E. The effect of phosphate and Ca on force generation in glycerinated rabbit skeletal muscle fibers. J Biol Chem. 1990;265:20234–20240.

    PubMed  CAS  Google Scholar 

  14. Kawai M, Saeki Y, Zhao Y. Crossbridge scheme and the kinetic constants of elementary steps deduced from chemically skinned papillary and trabecular muscles of the ferret. Circ Res. 1993;73:35–50.

    Article  PubMed  CAS  Google Scholar 

  15. Walker JW, Lu Z, Moss RL. Effects of Ca2+ on the kinetics of phosphate release in skeletal muscle. J Biol Chem. 1992;267:2459–2466.

    PubMed  CAS  Google Scholar 

  16. Kress M, Huxley HE, Faruqi AR, Hendrix J. Structural changes during activation of frog muscle studied by time resolved X-ray diffraction. J Mol Biol. 1986;188:325–342.

    Article  PubMed  CAS  Google Scholar 

  17. Brenner B. Changes in calcium sensitivity at the crossbridge level. In: Lee JA, Allen DG, eds. Modulation of Cardiac Calcium Sensitivity, Oxford: Oxford University Press; 1993:197–214.

    Google Scholar 

  18. Heeley DH, Smillie LB. Interaction of rabbit skeletal muscle troponin T and F-actin at physilogical ionic strength. Biochemistry. 1988;27:8227–8231.

    Article  PubMed  CAS  Google Scholar 

  19. Lehrer S. The regulatory switch of the muscle thin filament: Ca2+ or myosin heads? J Mus Res Cell Motility. 1994;15:232–236.

    CAS  Google Scholar 

  20. Krudy G, Kleerkoper Q, Guo X, Howarth JW, Solaro RJ, Rosevear PR. NMR studies delineating spatial relationships within the cardiac troponin I-troponin C complex. J Biol Chem. 1994;269:23731–23735.

    PubMed  CAS  Google Scholar 

  21. Farah CS, Miyamoto CA, Ramos CHI. Structural and regulatory functions of the NH2 and COOH-terminal regions of skeletal muscle troponin I. J Biol Chem. 1994;269:5230–5240.

    PubMed  CAS  Google Scholar 

  22. Guo X, Wattanapermpool J, Palmiter KA, Murphy AM, Solaro RJ. Mutagenesis of Cardiac Troponin I. Role of the Unique NH2-Terminal Peptide in Myofilament Activation. J Biol Chem. 1994;269:15210–15216.

    PubMed  CAS  Google Scholar 

  23. Bremel R, Murray J, Weber A. Manifestations of cooperative behavior in the regulated actin filament during actin-activated ATP hydrolysis in the presence of calcium. Cold Spring Harbor Symp Quant Biol. 1973;37:267–275.

    Article  CAS  Google Scholar 

  24. Noland TA Jr, Kuo JF. Protein kinase C phosphorylation of cardiac troponin I or troponin T inhibits Ca2+-stimulated actomyosin MgATPase activity. J Biol Chem. 1991;266:4974–4978.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Solaro, R.J. (1995). Troponin C — Troponin I Interactions and Molecular Signalling in Cardiac Myofilaments. In: Sideman, S., Beyar, R. (eds) Molecular and Subcellular Cardiology. Advances in Experimental Medicine and Biology, vol 382. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1893-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1893-8_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5772-8

  • Online ISBN: 978-1-4615-1893-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics