Skip to main content

Effects of Different Mechanical Ventilation Modes on Oxygenation in Surfactant Depleted Rabbit Lungs

  • Chapter
Oxygen Transport to Tissue XVI

Abstract

Application of the conventional volume controlled ventilation (VCV) with positive end-expiratory pressure (PEEP) is usually a successful mode as an immediate therapy to relieve hypoxemia in acute respiratory failure (ARF).1 However, this form of ventilation is associated with high tidal volumes (VT) and high peak inspiratory pressures (PIP) which are suggested to cause barotrauma and morphological changes in the lungs.2-5

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.G. Asbaugh, T.L. Petty, D.B. Bigelow, and T.M. Harris, Continuous positive-pressure breathing (CPPB) in adult respiratory distress syndrome. J Thorax Cardiovasc Surg. 57:31–41 (1969).

    Google Scholar 

  2. B. Lachmann, B. Robertson, and Vogel J, In-vivo lung lavage as an experimental model of the respiratory distress syndrome, Acta Anaesth Scand. 24:231–236 (1980).

    Article  PubMed  CAS  Google Scholar 

  3. P.P. Hamilton, A. Onayemi, J.A. Smith, J.E. Gillan, E. Cutz, A.B. Froese, and Bryan AC, Comparison of conventional and high frequency ventilation: oxygenation and lung pathology, J Appl Physiol. 55:131–138 (1983).

    PubMed  CAS  Google Scholar 

  4. T. Kolobow, M.P. Moretti, R. Fumagali, D. Mascheroni, P. Prato, V. Chen, and M. Joris, Severe impairment in lung function induced by high peak airway pressure during mechanical ventilation, An experimental study, Am Rev Respir Dis. 135:312–315 (1987).

    PubMed  CAS  Google Scholar 

  5. D. Dreyfuss, P. Soler, G. Basset, and Saumon G, High inflation pressure pulmonary edema. Respective effects of high airway pressure, high tidal volume and positive end-expiratory pressure, Am Rev Respir Dis. 137:1159–1164 (1988).

    PubMed  CAS  Google Scholar 

  6. B. Lachmann, E. Danzmann, B. Haendly, and B. Jonson, Ventilator settings and gas exchange in respiratory distress syndrome, in: “Applied Physiology in Clinical Respiratory Care,” O. Prakash, ed., Martinus Nijhoff Publishers, The Hague, (1982).

    Google Scholar 

  7. B. Lachmann, B. Jonson, M. Lindroth, and Robertson, Modes of artificial ventilation in severe respiratory distress syndrome. Lung function and morphology in rabbits after wash-out of alveolar surfactant. Crit Care Med. 10:724–732 (1982).

    Article  PubMed  CAS  Google Scholar 

  8. G.C. Carlon, W.S. Howland, C. Ray, S. Miadownik, J.P. Griffin, and J.S. Groeger, High-frequency jet ventilation, A prospective randomized evaluation, Chest 84:551–559 (1983).

    Article  PubMed  CAS  Google Scholar 

  9. W.A. Carlo, R.L. Chatburn, and R.J. Marti, Randomized trial of high-frequency jet ventilation versus conventional ventilation in respiratory distress syndrome, J Pediatr. 110:275–282 (1987).

    Article  PubMed  CAS  Google Scholar 

  10. B. Lachmann, Open the lung and keep the lung open, Intensive Care Med. 18:319–321 (1992).

    Article  PubMed  CAS  Google Scholar 

  11. J.M. Hurst, and C.B. DeHaven, Adult respiratory distress syndrome: Improved oxygenation during high frequency jet ventilation/continuous positive airway pressure, Surgery 96:764–769 (1984).

    PubMed  CAS  Google Scholar 

  12. N. El-Baz, L.P. Faber, and A. Doolas, Combined high-frequency ventilation for management of terminal respiratory failure: a new technique, Anesth Analg. 62:39–49 (1983).

    Article  PubMed  CAS  Google Scholar 

  13. E. Barzilay, D. Kessler, and R. Raz, Superimposed high frequency ventilation with conventional mechanical ventilation, Chest 95:681–682 (1989).

    Article  PubMed  CAS  Google Scholar 

  14. B.R. Boynton, F.L. Mannino, R.F. Davis, R.J. Kopotic, and G. Friederichsen, Combined high-frequency oscillatory ventilation and intermittent mandatory ventilation in critically ill neonates, J Pediatr. 105:297–302 (1984).

    Article  PubMed  CAS  Google Scholar 

  15. B. Lachmann, W. Schairer, M. Hafner, S. Armbruster, and B. Jonson, Volume-controlled ventilation with superimposed high frequency ventilation during expiration in healthy and surfactant-depleted pig lungs, Acta Anaesthesiol Scand 33., Supp 90:117–119 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kesecioglu, J., Telci, L., Tütüncü, A.S., Esen, F., Erdmann, W., Lachmann, B. (1994). Effects of Different Mechanical Ventilation Modes on Oxygenation in Surfactant Depleted Rabbit Lungs. In: Hogan, M.C., Mathieu-Costello, O., Poole, D.C., Wagner, P.D. (eds) Oxygen Transport to Tissue XVI. Advances in Experimental Medicine and Biology, vol 361. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1875-4_77

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1875-4_77

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5763-6

  • Online ISBN: 978-1-4615-1875-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics