Skip to main content

Nano-Spintronics with Lateral Quantum Dots

  • Chapter
Electron Transport in Quantum Dots

Abstract

Over the last decade there has been a tremendous increase in the research devoted to nanotechnology. This trend is driven both by the potential for new paradigms and technological applications as well as by the fundamental science suggested by new quantum regimes. More recently a similar explosion of effort has commenced in the field of spintronics and, in particular, in semiconductor spintronics [1]. The attraction of exploiting the electrons other quantum degree of freedom in semiconductors is clear, making it possible to examine novel device functionalities, achieve combined memory and logic functions and to explore the feasibility of spin-based qubits for quantum information applications. In this chapter we combine these two fields and consider a field we have termed Nano-spintronics. Nano-spintronics is related to spintronics in the same way that nano-electronics is to electronics—it is spintronics on the small scale and, ultimately, at the single spin level (single spintronics).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnar, M.L. Roukes, A.Y. Chytelkanova, and D.M. Treger, Spintronics: A spin-based electronics vision for the future, Science 294, 1488-1495 (2001).

    Article  ADS  Google Scholar 

  2. M.F. Crommie, C.P. Lutz, and D.M. Eigler, Imaging standing waves in a two-dimensional electron gas, Nature 363, 524-527 (1993).

    Article  ADS  Google Scholar 

  3. P.M. Petroff and S.P. DenBaars, MBE and MOCVD growth and properties of self-assembling quantum dot arrays in III-V semiconductor structures, Superlatt. Microstruct. 15(1), 15-21 (1994).

    Article  ADS  Google Scholar 

  4. J. Lefebvre, P.J. Poole, J. Fraser, G.C. Aers, D. Chithrani, and R.L. Williams, Self-assembled In As quantum dots on InP nano-templates, J. Cryst. Growth 234(2-3), 391-398 (2002).

    Article  ADS  Google Scholar 

  5. T.J. Thorton, M. Pepper, H. Ahmed, D. Andrews and G.J. Davies, One-dimensional conduction in the 2D electron gas of a GaAs-AlGaAs heterojunction, Phys. Rev. Lett. 56(11), 1198-1201 (1986).

    Article  ADS  Google Scholar 

  6. P. Hawrylak, Single-electron capacitance spectroscopy of few-electron artificial atoms in a magnetic field: Theory and experiment, Phys. Rev. Lett. 71(20), 3347-3350 (1993).

    Article  ADS  Google Scholar 

  7. L. Jacak, P. Hawrylak, and A. Wojs, Quantum Dots. Springer-Verlag, Berlin (1997).

    Google Scholar 

  8. J. Kyriakidis, M. Pioro-Ladriere, M. Ciorga, A.S. Sachrajda, and P. Hawrylak, Voltage-tunable singlet-triplet transition in lateral quanum dots, Phys. Rev. B 66(3), 35320-35327 (2002).

    Article  ADS  Google Scholar 

  9. D.J. Lockwood, P. Hawrylak, P.D. Wang, C.M. Sotomayor Torres, A. Pinczuk, and B.S. Dennis, Shell structure and electronic excitations of quantum dots in a magnetic field probed by inelastic light scattering, Phys. Rev. Lett. 77(2), 354-357 (1996).

    Article  ADS  Google Scholar 

  10. P. Hawrylak, A. Wojs, and J.A. Brum, Magnetoexcitons and correlated electrons in quantum dots in a magnetic field, Phys. Rev. Lett. B 54(16), 11397-11409 (1996).

    Article  ADS  Google Scholar 

  11. A. Wensauer, M. Korkusiriski, and P. Hawrylak, Theory of the spin singlet filling factor v = 2 quantum Hall droplet, Phys. Rev. B 67, 035325 (2003)

    Article  ADS  Google Scholar 

  12. A. Wojs and P. Hawrylak, Spectral functions of quantum dots in the integer and fractional quantum Hall regime, Phys. Rev. B, 56(20), 13227-13234 (1997).

    Article  ADS  Google Scholar 

  13. P. Hawrylak, C. Gould, A.S. Sachrajda, Y. Feng, and Z. Wasilewski, Collapse of the Zeeman gap in quantum dots due to electronic correlations, Phys. Rev. B 59(4), 2801-2806(1999).

    Article  ADS  Google Scholar 

  14. B.J. van Wees, L.P. Kouwenhoven, C.J.P.M. Harmans, J.G. Williamson, C.E. Timmering, M.E.I. Broekaart, C.T. Foxon, and J.J. Harris, Observation of zero-dimensional states in a one-dimensional electron interferometer, Phys. Rev. Lett. 62(21), 2523-2526 (1989); R.P. Taylor, A.S. Sachrajda, P. Zawadzki, P.T. Coleridge, and J.A. Adams, Aharonov-Bohm oscillations in the Coulomb blockade regime, Phys. Rev. Lett. 69(13), 1989-1992 (1992).

    Article  ADS  Google Scholar 

  15. G. Kirczenow, A.S. Sachrajda, Y. Feng, R.P. Taylor, L. Henning, J. Wang, P. Zawadzki, and P.T. Coleridge, Artifical impurties in quantum wires: From classical to quantum behaviour, Phys. Rev. Lett. 72(13), 2069-2072 (1994); C.J.B. Ford, P.J. Simpson, I. Zailer, D.R. Mace, M. Yosefin, M. Pepper, D.A. Ritchie, J.E.F. Frost, M.P. Grimshaw, and G.A.C. Jones, Charging and double-frequency Aharonov-Bohm effects in an open system, Phys. Rev. B 49(24), 17456-17459(1994).

    Article  ADS  Google Scholar 

  16. D.A. Wharam, T.J. Thornton, R. Newbury, M. Pepper, H. Ahmed, J.E.F. Frost, D.G. Hasko, D.C. Peacock, D.A. Ritchie, and G.A.C. Jones, One-dimensional transport and the quantisation of the ballistic resistance, J. Phys. C 21(8), L209-L214 (1988); B.J. van Wees, H. van Houten, C.W.J. Beenakker, J.G. Williamson, L.P. Kouwenhoven, D. van der Marel, and C.T. Foxon, Quantized conductance of point contacts in a two-dimensional electron gas, Phys. Rev. Lett. 60(9), 848-850 (1988).

    Article  ADS  Google Scholar 

  17. J.H.F. Scott-Thomas, S.B. Field, M.A. Kastner, H.I. Smith, and D.A. Antoniadis, Conductance oscillations periodic in the density of a one-dimensional electron gas, Phys. Rev. Lett. 62(5),583-586(1989).

    Article  ADS  Google Scholar 

  18. D. Gammon, E.S. Snow, B.V. Shanabrook, D.S. Katzer, and D. Park, Homogenous linewidths in the optical spectrum of a single gallium arsenide quantum dot, Science 273, 87-90 (1996); A. Kuther, M. Bayer, A. Forchel, A. Gorbumov, V.B. Timofeev, F. Schafer, and J.P. Reithhmeier, Zeeman splitting of excitons and biexcitons in single In0.60Ga0.40As/GaAs self assembled quantum dots, Phys. Rev. B 58(12), R7508-R7511 (1998).

    Article  ADS  Google Scholar 

  19. P.L. McEuen, E.B. Foxman, U. Meirav, M.A. Kastner, Y. Meir, and N.S. Wingreen, Transport spectroscopy of a Coulomb island in the quantum Hall regime, Phys. Rev. Lett. 66(14), 1926-1929 (1991); P.L. McEuen, E.B. Foxman, J. Kinaret, U. Meirav, M.A. Kastner, N.S. Wingreen, and S.J. Wind, Self-consistent addition spectrum of a Coulomb island in the quantum Hall regime, Phys. Rev. B 45(19), 11419-11422 (1992).

    Article  ADS  Google Scholar 

  20. L.P. Kouwenhoven, C.M. Marcus, P.L. McEuen, S. Tarucha, R.M. Westervelt, and N.S. Wingreen, Electron transport in quantum dots, in Mesoscopic electron transport, NATO ASI Conference Proceedings (eds. L.L. Sohn, L.P. Kouwenhoven, and G. Schön), Kluwer Academic, Dordrecht, (1997) (Series E 345).

    Google Scholar 

  21. L.P. Kouwenhoven, D.G. Austing, and S. Tarucha, Few-electron quantum dots, Rep. Prog. Phys 64(6), 701-731 (2001).

    Article  ADS  Google Scholar 

  22. M. Ciorga, A.S. Sachrajda, P. Hawrylak, C. Gould, P. Zawadzki, S. Jullian, Y. Feng, and Z. Wasilewski, Addition spectrum of a lateral dot from Coulomb and spin-blockade spectroscopy, Phys. Rev. B 61(24), R16315-R16318 (2000).

    Article  ADS  Google Scholar 

  23. D. Sprinzak, Y. Ji, M. Heiblum, D. Mahalu, and H. Shtrikman, Charge distribution in a Kondo-correlated quantum dot, Phys. Rev. Lett. 88(17), 176805-176808 (2002).

    Article  ADS  Google Scholar 

  24. R. Fiederling, M. Keim, G. Reuscher, W. Ossau, G. Schnidt, A. Waag, and L.W. Molenkamp, Injection and detection of a spin-polarized current in a light emitting diode, Nature 402, 787-790(1999)

    Article  ADS  Google Scholar 

  25. Y. Ohno, D.K. Young, F. Matsukura, H. Ohno, and D.D. Awschalom, Electrical spin injection in a ferromagnetic semiconductor heterostructure, Nature 402, 790-792 (1999).

    Article  ADS  Google Scholar 

  26. P.R. Hammar and M. Johnson, Detection of spin-polarized electrons injected into a two-dimensional electron gas, Phys. Rev. Lett. 88(6), 066806-066809 (2002).

    Article  ADS  Google Scholar 

  27. D.B. Chklovskii, B.I. Shklovskii, and L.I. Glazman, Electrostatics of edge channels, Phys. Rev. B 46(7), 4026-4034 (1992); R. Haug, Edge-state transport and its experimental consequences in high magnetic fields, Semicon. Sci. Tech. 8, 131-153 (1993).

    Article  ADS  Google Scholar 

  28. A.S. Sachrajda, P. Hawrylak, M. Ciorga, C. Gould, and P. Zawadzki, Spin polarized injection into a quantum dot by means of the spatial separation of spins, Physica E 10, 493-498 (2001).

    Article  ADS  Google Scholar 

  29. M. Ciorga, M. Pioro-Ladriere, P. Zawadzki, P. Hawrylak, and A.S. Sachrajda, Tunable negative differential resistance controlled by spin blockade in single-electron transistors, Appl. Phys. Lett. 80(12), 2177-2179 (2002).

    Article  ADS  Google Scholar 

  30. M. Pioro-Ladriere, Master Thesis, Étude par spectroscopic de Coulomb d’un boîte quantique latérale contenant de 1 à 12 électrons, University of Sherbrooke, Quebec, Canada (2002).

    Google Scholar 

  31. S. Tarucha, D.G. Austing, T. Honda, R.J. van der Hage, and L.P. Kouwenhoven, Shell filling and spin effects in a few electron quantum dot, Phys. Rev. Lett. 77(17), 3613-3616 (1996).

    Article  ADS  Google Scholar 

  32. R.C. Ashoori, H.L. Stormer, J.S. Weiner, L.N. Pfeiffer, K.W. Baldwin, and K.W. West, N-electron ground states of a quantum dot in magnetic field, Phys. Rev. Lett. 71(4), 613-616 (1993).

    Article  ADS  Google Scholar 

  33. J.A. Brum and P. Hawrylak, Coupled quantum dots as quantum exclusive-OR gate, Superlatt. Microstruct. 22(3), 431-436 (1997).

    Article  ADS  Google Scholar 

  34. D. Loss and D.P. DiVincenzo, Quantum computation with quantum dots, Phys. Rev. A 57(1), 120-126(1998).

    Article  ADS  Google Scholar 

  35. T. Fujisawa, D.G. Austing, Y. Tokura, Y. Hirayama, and S. Tarucha, Allowed and forbidden transitions in artificial hydrogen and helium atoms, Nature 419, 278-281 (2002).

    Article  ADS  Google Scholar 

  36. T. Schmidt, M. Tewordt, R.H. Blick, R.J. Haug, D. Pfannkuche, K. v. Klitzing, A. Förster, and H. Lüth, Quantum-dot ground states in a magnetic field studied by single-electron tunneling spectroscopy on double-barrier heterostructures, Phys. Rev. B 51(8), 5570-5573 (1995); B. Su, V.J. Goldman, and J.E. Cunningham, Single-electron tunneling in nanometer-scale double-barrier heterostructure devices, Phys. Rev. B 46, 7644-7655 (1992).

    Article  ADS  Google Scholar 

  37. W.G. van der Wiel, T.H. Oosterkamp, J.W. Janssen, L.R Kouwenhoven, D.G. Austing, T. Honda, and S. Tarucha, Singlet-triplet transitions in a few electron quantum dot, Physica B 256-258, 173-177 (1998).

    Article  ADS  Google Scholar 

  38. M. Ciorga, A.S. Sachrajda, P. Hawrylak, C. Gould, P. Zawadzki, Y. Feng, and Z. Wasilewski, Readout of a single electron spin based quantum bit by current detection, Physica E 11 35-40(2001).

    Article  ADS  Google Scholar 

  39. L.P. Kouwenhoven, T.H. Oosterkamp, M.W.S. Danoesastro, M. Eto, D.G. Austing, T. Honda, and S. Tarucha, Excitation spectra of circular, few-electron quantum dots, Science 278, 1788-1792(1997).

    Article  ADS  Google Scholar 

  40. G. Burkard, H.A. Engel, and D. Loss, Spintronics and quantum dots for quantum computing and quantum communication, Fortschritte der Physik 48 (Special Issue on Experimental Proposals for Quantum Computation), 965-886 (2000).

    Article  ADS  Google Scholar 

  41. S. Tarucha, D.G. Austing, Y. Tokura, W.G. van der Wiel, and L.P. Kouwenhoven, Direct Coulomb and exchange interaction in artificial atoms, Phys. Rev. Lett. 84(11), 2485-2488 (2000).

    Article  ADS  Google Scholar 

  42. M. Ciorga, A. Wensauer, M. Pioro-Ladriere, M. Korkusinski, J. Kyriakidis, A.S. Sachrajda, and P. Hawrylak, Collapse of the spin-singlet phase in quantum dots, Phys. Rev. Lett. 88(25), 256804-256807 (2002).

    Article  ADS  Google Scholar 

  43. D.G. Austing, Y. Tokura, T. Honda, S. Tarucha, M. Danoestastro, J. Janssen, T. Oosterkamp, and L. Kouwenhoven, Several- and many-electron artificial-atoms at filling factors between 2 and 1, Jpn. J. Appl. Phys. 38(1), 372-375 (1999).

    Article  ADS  Google Scholar 

  44. T.H. Oosterkamp, J.W. Janssen, L.P. Kouwenhoven, D.G. Austing, T. Honda, and S. Tarucha, Maximum-density droplet and charge redistributions in quantum dots at high magnetic fields, Phys. Rev. Lett. 82(14), 2931-2934 (1999).

    Article  ADS  Google Scholar 

  45. C. Gould, P. Hawrylak, A.S. Sachrajda, Y. Feng, P. Zawadzki, and Z. Wasilewski, Correlations effects in few-electron quantum dots between v = 2 and 1, Physica E 6, 461-465 (2000).

    Article  ADS  Google Scholar 

  46. M. Ciorga, M. Korkusinski, M. Pioro-Ladriere, P. Zawadzki, P. Hawrylak, and A.S. Sachrajda, Simple spin textures in a quantum dot, Phys. Status Solidi, (in press).

    Google Scholar 

  47. J.H. Oaknin, L. Martín—Moreno, and C. Tejedor, Skyrmions and edge-spin excitations in quantum Hall droplets, Phys. Rev. B 54(23), 16850-16859 (1996).

    Article  ADS  Google Scholar 

  48. J. Weis, R.J. Haug, K. v. Klitzing, and K. Ploog, Competing channels in single-electron tunneling through a quantum dot, Phys. Rev. Lett. 71(24), 4019-4022.

    Google Scholar 

  49. M. Ciorga, M. Pioro-Ladriere, P. Zawadzki, P. Hawrylak, and A.S. Sachrajda, The break-up of a lateral quantum dot into multiple dots in high magnetic fields, in Proceedings of the 26th International Conference on the Physics of Semiconductors, Edinburgh (2002), CD-ROM edition.

    Google Scholar 

  50. P. Hawrylak, Spin effects in quantum Hall droplets, in Proceedings of NATO ARW-Recent Trends in Theory of Physical Phenomena, I. Vagner, P. Wyder (eds.) (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sachrajda, A., Hawrylak, P., Ciorga, M. (2003). Nano-Spintronics with Lateral Quantum Dots. In: Bird, J.P. (eds) Electron Transport in Quantum Dots. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0437-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0437-5_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7459-2

  • Online ISBN: 978-1-4615-0437-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics