Skip to main content

Rgs9-1 Phosphorylation And Ca2+

  • Chapter
Photoreceptors and Calcium

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 514))

Abstract

The duration of photoresponses in vertebrate rods and cones is controlled at the level of GTP hydrolysis by a GTPase accelerating protein (GAP) whose catalytic core is provided by RGS9-l. RGS9-1 is in turn regulated by phosphorylation on serine 475, in a reaction that is dependent on Ca2+. In living mice, the level of phosphorylation at this site is reduced by light. Thus RGS9-1 phosphorylation provides a potential mechanism by which light-regulated changes in intracellular [Ca2+] may feed back on phototransduction through effects on the lifetime of activated G protein and cGMP phosphodiesterase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sather WA, Detwiler PB. Intracellular biochemical manipulation of phototransduction in detached rod outer segments. Proc Natl Acad Sci USA 1987; 84:9290–4.

    Article  PubMed  CAS  Google Scholar 

  2. Lamb TD, Matthews HR. Incorporation of analogues of GTP and GDP into rod photoreceptors isolated from the tiger salamander. J Physiol 1988; 407:463–87.

    PubMed  CAS  Google Scholar 

  3. Sagoo MS, Lagnado L. G-protein deactivation is rate-limiting for shut-off of the phototransduction cascade. Nature 1997; 389:392–5.

    Article  PubMed  CAS  Google Scholar 

  4. Lyubarsky A, Nikonov S, Pugh EN Jr. The kinetics of inactivation of the rod phototransduction cascade with constant Ca2+i. J Gen Physiol 1996; 107:19–34.

    Article  PubMed  CAS  Google Scholar 

  5. Barkdoll AE 3rd, Pugh EN Jr., Sitaramayya A. Calcium dependence of the activation and inactivation kinetics of the light-activated phosphodiesterase of retinal rods. J Gen Physiol 1989; 93:1091–108.

    Article  PubMed  CAS  Google Scholar 

  6. Koelle MR, Horvitz HR. EGL-10 regulates G protein signaling in the C. elegans nervous system and shares a conserved domain with many mammalian proteins. Cell 1996; 84:115–25.

    Article  PubMed  CAS  Google Scholar 

  7. Ross EM, Wilkie TM. GTPase-activating proteins for heterotrimeric G proteins: regulators of G protein signaling (RGS) and RGS-like proteins. Annu Rev Biochem 2000; 69:795–827.

    Article  PubMed  CAS  Google Scholar 

  8. Berman DM, Wilkie TM, Gilman AG. GAIP and RGS4 are GTPase-activating proteins for the Gi subfamily of G protein alpha subunits. Cell 1996; 86:445–52.

    Article  PubMed  CAS  Google Scholar 

  9. He W, Cowan CW, Wensel TG. RGS9, a GTPase accelerator for phototransduction. Neuron 1998; 20:95–102.

    Article  PubMed  Google Scholar 

  10. Rahman Z, Gold SJ, Potenza MN et al. Cloning and characterization of RGS9–2: a striatal-enriched alternatively spliced product of the RGS9 gene. J Neurosci 1999; 19:2016–26.

    PubMed  CAS  Google Scholar 

  11. Zhang K, Howes KA, He W et al. Structure, alternative splicing, and expression of the human RGS9 gene. Gene 1999; 240:23–34.

    Article  PubMed  CAS  Google Scholar 

  12. Cowan CW, Fariss RN, Sokal I et al. High expression levels in cones of RGS9, the predominant GTPase accelerating protein of rods. Proc Natl Acad Sci USA 1998; 95:5351–5356.

    Article  PubMed  CAS  Google Scholar 

  13. Chen CK, Burns ME, He W et al. Slowed recovery of rod photoresponse in mice lacking the GTPase accelerating protein RGS9–1. Nature 2000; 403:557–560.

    Article  PubMed  CAS  Google Scholar 

  14. Lyubarsky AL, Naarendorp F, Zhang X et al. RGS9–1 is required for normal inactivation of mouse cone phototransduction. Mol Vis 2001; 7:71–78.

    PubMed  CAS  Google Scholar 

  15. Sowa ME, He W, Wensel TG et al. A regulator of G protein signaling interaction surface linked to effector specificity. Proc Natl Acad Sci USA 2000; 97:1483–1488.

    Article  PubMed  CAS  Google Scholar 

  16. Sowa ME, He W, Step KC et al. Prediction and confirmation of a site critical for effector regulation of RGS domain activity. Nat Struct Biol 2001; 8:234–237.

    Article  PubMed  CAS  Google Scholar 

  17. He W, Lu L, Zhang X et al. Modules in the photoreceptor RGS9–1.Gbeta 5L GTPase-accelerating protein complex control effector coupling, GTPase acceleration, protein folding, and stability. J Biol Chem 2000; 275:37093–37100.

    Article  PubMed  CAS  Google Scholar 

  18. Thomas EA, Danielson PE, Sutcliffe JG. RGS9: A regulator of G-protein signalling with specific expression in rat and mouse striatum. J Neurosci Res 1998; 52:118–124.

    Article  PubMed  CAS  Google Scholar 

  19. He W, Cowan CW, Melian TJ, Jr. et al. Dependence of RGS9-I membrane attachment on its C-terminal tail. J Biol Chem 2002; 276:48961–48966.

    Article  Google Scholar 

  20. Skiba NP, Martemyanov KA, Elfenbein A et al. RGS9-G beta 5 substrate selectivity in photoreceptors. Opposing effects of constituent domains yield high affinity of RGS interaction with the G protein-effector complex. J Biol Chem 2001; 276:37365–37372.

    Article  PubMed  CAS  Google Scholar 

  21. Hu G, Jang GF, Cowan CW et al. Phosphorylation of RGS9–1 by an endogenous protein kinase in rod outer segments. J Biol Chem 2001; 276:22287–22295.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wensel, T.G. (2002). Rgs9-1 Phosphorylation And Ca2+ . In: Baehr, W., Palczewski, K. (eds) Photoreceptors and Calcium. Advances in Experimental Medicine and Biology, vol 514. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0121-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0121-3_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4933-4

  • Online ISBN: 978-1-4615-0121-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics