Skip to main content

Abstract

Groundnut or peanut is an important legume nut known for its multifarious uses including oil production, direct human consumption as food and also animal consumption in the form of hay, silage and cake. Being a grain legume, peanut has an important nutritional value for human beings, and its nutritional value has been exploited for combating malnutrition in children. The breeding objectives in groundnut focus on increasing yield, incorporating resistance/tolerance to biotic and abiotic stresses and improving oil and nutritional quality including safety of its consumption by humans and animals. However, limited genetic variability in the cultivated germplasm and difficulties in hybridisation have slowed down the progress in groundnut breeding. The wild relatives are considered as sources of several agriculturally important traits including resistance to pests and pathogens, tolerance to abiotic stresses and variable nutritional value. These resources have been used in groundnut breeding programmes for improving the above traits, simultaneously addressing the constraint of reproductive barrier in successful hybridisation arising due to different ploidy levels of A. hypogaea and its wild relatives. This has been achieved through different routes: the hexaploid pathway, two different diploid/tetraploid pathways and genetic engineering-based methods. Nonetheless, the use of wild introgressions in groundnut improvement programmes has not been up to the desired extent, and therefore concerted efforts for a large-scale generalised introgression programme are required. This chapter discusses the evaluation and utilisation of alien introgressions in groundnut improvement, the achievements made hitherto and the future strategies for initiating a large-scale introgression programme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barkley NA, Dean RE, Pittman RN, Wang ML, Holbrook CC, Pederson GA (2007) Genetic diversity of cultivated and wild-type peanuts evaluated with M13-tailed SSR markers and sequencing. Genet Res 89:93–106

    CAS  PubMed  Google Scholar 

  • Bechara MD, Moretzsohn MC, Palmieri DA, Monteiro JP, Bacci M, Martins J, Valls JF, Lopes CR, Gimenes MA (2010) Phylogenetic relationships in genus Arachis based on ITS and 5.8S rDNA sequences. BMC Plant Biol 10:255

    PubMed Central  PubMed  Google Scholar 

  • Bertioli DJ, Seijo G, Freitas FO, Valls JFM, Leal-Bertioli S, Moretzsohn MC (2011) An overview of peanut and its wild relatives. Plant Genet Resour 9:134–149

    Google Scholar 

  • Bravo JP, Hoshino AA, Angelici CMLCD, Lopes CR, Gimenes MA (2006) Transferability and use of microsatellite markers for the genetic analysis of the germplasm of some Arachis section species of the genus Arachis. Genet Mol Biol 29:516–524

    CAS  Google Scholar 

  • Briend A (2001) Highly nutrient-dense spreads: a new approach to delivering multiple micronutrients to high-risk groups. Br J Nutr 85:175

    Google Scholar 

  • Budiman MA, Jones JIT, Citek RW, Warek U, Bedell JA, Knapp SJ (2006) Methylation-filtered and shotgun genomic sequences for diploid and tetraploid peanut taxa. GenBank Available at http://www.Ncbi.Nlm.Nih.Gov

  • Burow MD, Simpson CE, Starr JL, Paterson AH (2001) Transmission genetics of chromatin from a synthetic amphidiploid to cultivated peanut Arachis hypogaea L. broadening the gene pool of a monophyletic polyploid species. Genetics 159:823–837

    CAS  PubMed  Google Scholar 

  • Cuc L, Mace E, Crouch J, Quang V, Long T, Varshney R (2008) Isolation and characterization of novel microsatellite markers and their application for diversity assessment in cultivated groundnut Arachis hypogaea. BMC Plant Biol 8:55

    PubMed Central  PubMed  Google Scholar 

  • Dwivedi SL, Gurtu S, Chandra S, Yuejin W, Nigam SN (2001) Assessment of genetic diversity among selected groundnut germplasm. I: RAPD analysis. Plant Breed 120:345–349

    CAS  Google Scholar 

  • FAOSTAT. Rome, Italy. http://faostat.fao.org/

  • Fávero AP, Simpson CE, Valls JFM, Vello NA (2006) Study of the evolution of cultivated peanut through crossability studies among Arachis ipaënsis, A. duranensis, and A. hypogaea. Crop Sci 46:1546

    Google Scholar 

  • Ferguson ME, Burow MD, Schulze SR, Bramel PJ, Paterson AH, Kresovich S, Mitchell S (2004) Microsatellite identification and characterization in peanut A. hypogaea L. Theor Appl Genet 108:1064–1070

    CAS  PubMed  Google Scholar 

  • Fonceka D, Hodo-Abalo T, Rivallan R, Faye I, Sall MN, Ndoye O, Favero A, Bertioli D, Glaszmann JC, Courtois B, Rami JF (2009) Genetic mapping of wild introgressions into cultivated peanut: a way toward enlarging the genetic basis of a recent allotetraploid. BMC Plant Biol 9:103

    PubMed Central  PubMed  Google Scholar 

  • Fonceka D, Tossim HA, Rivallan R, Vignes H, Faye I, Ndoye O, Moretzsohn MC, Bertioli DJ, Glaszmann JC, Courtois B, Rami JF (2012a) Fostered and left behind alleles in peanut: interspecific QTL mapping reveals footprints of domestication and useful natural variation for breeding. BMC Plant Biol 12:26

    PubMed Central  PubMed  Google Scholar 

  • Fonceka D, Tossim HA, Rivallan R, Vignes H, Lacut E, De Bellis F, Faye I, Ndoye O, Leal-Bertioli SCM, Valls JFM, Bertioli DJ, Glaszmann JC, Courtois B, Rami JF (2012b) Construction of chromosome segment substitution lines in peanut Arachis hypogaea L. using a wild synthetic and QTL mapping for plant morphology. PLoS One 7:e48642

    CAS  PubMed Central  PubMed  Google Scholar 

  • Freitas FO, Moretzsohn MC, Valls JFM (2007) Genetic variability of Brazilian Indian landraces of Arachis hypogaea L. Genet Mol Res 6:675–684

    CAS  PubMed  Google Scholar 

  • Friend S, Quandt D, Tallury S, Stalker H, Hilu K (2010) Species, genomes, and section relationships in the genus Arachis (Fabaceae): a molecular phylogeny. Plant Syst Evol 290:185–199

    Google Scholar 

  • Garcia GM, Stalker HT, Kochert G (1995) Introgression analysis of an interspecific hybrid population in peanuts Arachis hypogaea L. using RFLP and RAPD markers. Genome 38:166–176

    CAS  PubMed  Google Scholar 

  • Garcia GM, Stalker HT, Shroeder E, Kochert G (1996) Identification of RAPD, SCAR, and RFLP markers tightly linked to nematode resistance genes introgressed from Arachis cardenasii into Arachis hypogaea. Genome 39:836–845

    CAS  PubMed  Google Scholar 

  • Garcia GM, Stalker HT, Shroeder E, Lyerly JH, Kochert G (2005) A RAPD-based linkage map of peanut based on a backcross population between the two diploid species Arachis stenosperma and A. cardenasii. Peanut Science 32:1–8

    Google Scholar 

  • Gautami B, Ravi K, Narasu ML, Hoisington DA, Varshney RK (2009) Novel set of groundnut SSR markers for germplasm analysis and interspecific transferability. Int J Integr Biol 7:100–106

    CAS  Google Scholar 

  • Gautami B, Foncéka D, Pandey MK, Moretzsohn MC, Sujay V, Qin H, Hong Y, Faye I, Chen X, BhanuPrakash A, Shah TM, Gowda MVC, Nigam SN, Liang X, Hoisington DA, Guo B, Bertioli DJ, Rami JF, Varshney RK (2012) An international reference consensus genetic map with 897 marker loci based on 11 mapping populations for tetraploid groundnut Arachis hypogaea L. PLoS One 7:e41213

    PubMed Central  PubMed  Google Scholar 

  • Gimenes MA, Lopes CR, Galgaro ML, Valls JFM, Kochert G (2002) RFLP analysis of genetic variation in species of section Arachis, genus Arachis (Leguminosae). Euphytica 123:421–429

    CAS  Google Scholar 

  • Gimenes M, Hoshino A, Barbosa A, Palmieri D, Lopes C (2007) Characterization and transferability of microsatellite markers of the cultivated peanut Arachis hypogaea. BMC Plant Biol 7:9

    PubMed Central  PubMed  Google Scholar 

  • Gowda MVC, Motagi BN, Naidu GK, Diddimani SB, Sheshagiri R (2002) GPBD 4: a Spanish bunch groundnut genotype resistant to rust and late leaf spot. Int Arachis Newslett 22:29–32

    Google Scholar 

  • Grabiele M, Chalup L, Robledo G, Seijo G (2012) Genetic and geographic origin of domesticated peanut as evidenced by 5S rDNA and chloroplast DNA sequences. Plant Syst Evol 298:1151–1165

    Google Scholar 

  • Grieshammer U, Wynne JC (1990) Isozyme variability in mature seeds of U. S. peanut cultivars and collections. Peanut Sci 17:72–75

    CAS  Google Scholar 

  • Grosso NR, Nepote V, Guzmán CA (2000) Chemical composition of some wild peanut species Arachis L. seeds. J Agric Food Chem 48:806–809

    CAS  PubMed  Google Scholar 

  • Guo B, Chen X, Hong Y, Liang X, Dang P, Brenneman T, Holbrook C, Culbreath A (2009) Analysis of gene expression profiles in leaf tissues of cultivated peanuts and development of EST-SSR markers and gene discovery. Int J Plant Genomics 2009:1–14

    Google Scholar 

  • Guok HP, Wynne JC, Stalker HT (1986) Recurrent selection within a population from an interspecific peanut cross. Crop Sci 26:249–253

    Google Scholar 

  • Gur A, Zamir D (2004) Unused natural variation can lift yield barriers in plant breeding. PLoS Biol 2:e245

    PubMed Central  PubMed  Google Scholar 

  • Halward TM, Stalker HT, LaRue EA, Kochert G (1991) Genetic variation detectable with molecular markers among unadapted germplasm resources of cultivated peanut and wild species. Genome 34:1013–1020

    CAS  Google Scholar 

  • Halward TM, Stalker HT, LaRue EA, Kochert G (1992) Use of single primer DNA amplification in genetic studies of peanut. Plant Mol Biol 18:315–325

    CAS  PubMed  Google Scholar 

  • Halward TM, Stalker HT, Kochert G (1993) Development of an RFLP linkage map in diploid peanut species. Theor Appl Genet 87:379–384

    CAS  PubMed  Google Scholar 

  • He G, Prakash CS (1997) Identification of polymorphic DNA markers in cultivated peanut Arachis hypogaea L. Euphytica 97:143–149

    CAS  Google Scholar 

  • He G, Prakash C (2001) Evaluation of genetic relationships among botanical varieties of cultivated peanut Arachis hypogaea L. using AFLP markers. Genet Resour Crop Evol 48:347–352

    Google Scholar 

  • He G, Meng R, Newman M, Gao G, Pittman RN, Prakash C (2003) Microsatellites as DNA markers in cultivated peanut Arachis hypogaea L. BMC Plant Biol 3:3

    PubMed Central  PubMed  Google Scholar 

  • He G, Meng R, Gao H, Guo B, Gao G, Newman M, Pittman RN, Prakash CS (2005) Simple sequence repeat markers for botanical varieties of cultivated peanut (Arachis hypogaea)L. Euphytica 142:131–136

    CAS  Google Scholar 

  • Herselman L (2003) Genetic variation among Southern African cultivated peanut (Arachis hypogaea) L. genotypes as revealed by AFLP analysis. Euphytica 133:319–327

    CAS  Google Scholar 

  • Hilu KW, Stalker HT (1995) Genetic relationships between peanut and wild species of Arachis sect. Arachis (Fabaceae): evidence from RAPDs. Plant Syst Evol 198:167–178

    CAS  Google Scholar 

  • Holbrook CC, Stalker HT (2003) Peanut breeding and genetic resources. Plant Breed Rev 22:297–356

    Google Scholar 

  • Holbrook CC, Timper P, Dong W, Kvien CK, Culbreath AK (2008) Development of near-isogenic peanut lines with and without resistance to the peanut root-knot nematode. Crop Sci 48:194

    Google Scholar 

  • Holbrook CC, Ozias-Akins P, Chu Y, Guo B (2011) Impact of molecular genetic research on peanut cultivar development. Agronomy 1:3–17

    Google Scholar 

  • Hong Y, Liang X, Chen X, Liu H, Zhou G, Li S, Wen S (2008) Construction of genetic linkage map based on SSR markers in peanut (Arachis hypogaea) L. Agric Sci China 7:915–921

    CAS  Google Scholar 

  • Hong Y, Chen X, Liang X, Liu H, Zhou G, Li S, Wen S, Holbrook CC, Guo B (2010) A SSR-based composite genetic linkage map for the cultivated peanut (Arachis hypogaea) L. genome. BMC Plant Biol 10:17

    PubMed Central  PubMed  Google Scholar 

  • Hopkins MS, Casa AM, Wang T, Mitchell SE, Dean RE, Kochert GD, Kresovich S (1999) Discovery and characterization of polymorphic simple sequence repeats SSRs in peanut. Crop Sci 39:1243–1247

    CAS  Google Scholar 

  • Husted L (1936) Cytological studies on the peanut, Arachis. II. Chromosome number, morphology and behavior, and their application to the problem of the origin of the cultivated forms. Cytologia 7:396–422

    Google Scholar 

  • Jiang HF, Ren XP, Huang JQ, Lei Y, Liao BS (2009) Acid components in Arachis species and interspecies hybrids with high oleic and low palmitic acids. Acta Agron Sin 35:25–32

    CAS  Google Scholar 

  • Khedikar Y, Gowda M, Sarvamangala C, Patgar K, Upadhyaya H, Varshney R (2010) A QTL study on late leaf spot and rust revealed one major QTL for molecular breeding for rust resistance in groundnut (Arachis hypogaea) L. Theor Appl Genet 121:971–984

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kochert G, Halward T, Branch WD, Simpson CE (1991) RFLP variability in peanut (Arachis hypogaea) L. cultivars and wild species. Theor Appl Genet 81:565–570

    CAS  PubMed  Google Scholar 

  • Kochert G, Stalker HT, Gimenes M, Galgaro L, Lopes CR, Moore K (1996) RFLP and cytogenetic evidence on the origin and evolution of allotetraploid domesticated peanut (Arachis hypogaea) (Leguminosae). Am J Bot 83:1282–1291

    CAS  Google Scholar 

  • Koilkonda P, Sato S, Tabata S, Shirasawa K, Hirakawa H, Sakai H, Sasamoto S, Watanabe A, Wada T, Kishida Y, Tsuruoka H, Fujishiro T, Yamada M, Kohara M, Suzuki S, Hasegawa M, Kiyoshima H, Isobe S (2012) Large-scale development of expressed sequence tag-derived simple sequence repeat markers and diversity analysis in Arachis spp. Mol Breed 30:125–138

    CAS  PubMed Central  PubMed  Google Scholar 

  • Krapovickas A, Gregory W (1994) Taxonomía del género Arachis (Leguminosae). Bonplandia 8:1–186

    Google Scholar 

  • Krapovickas A, Gregory WC (2007) Taxonomy of the genus Arachis (Leguminosae). Bonplandia 16(Suppl):1–205

    Google Scholar 

  • Krapovickas A, Vanni RO, Pietrarelli JR, Williams DE, Simpson CE (2009) Las razas de maní de Bolivia. Bonplandia 18:95–189

    Google Scholar 

  • Krishna TG, Mitra R (1988) The probable genome donors to Arachis hypogaea L. based on arachin seed storage protein. Euphytica 37:47–52

    Google Scholar 

  • Krishna GK, Zhang J, Burow M, Pittman RN, Delikostadinov SG, Lu Y, Puppala N (2004) Genetic diversity analysis in Valencia peanut Arachis hypogaea L. using microsatellite markers. Cell Mol Biol Lett 9:685–697

    CAS  PubMed  Google Scholar 

  • Lavia GI (1998) Karyotypes of Arachis palustris and A. praecox section Arachis, two species with basic chromosome number x = 9. Cytologia 63:177–181

    Google Scholar 

  • Leal-Bertioli S, Jose A, Alves-Freitas D, Moretzsohn M, Guimaraes P, Nielen S, Vidigal B, Pereira R, Pike J, Favero A et al (2009) Identification of candidate genome regions controlling disease resistance in Arachis. BMC Plant Biol 9:112

    PubMed Central  PubMed  Google Scholar 

  • Leal-Bertioli SC, De Farias MP, Silva PÍT, Guimarães PM, Brasileiro ACM, Bertioli DJ, De Araujo ACG (2010) Ultrastructure of the initial interaction of Puccinia arachidis and Cercosporidium personatum with leaves of Arachis hypogaea and Arachis stenosperma. J Phytopathol 158:792–796

    Google Scholar 

  • Leal-Bertioli SCM, Bertioli DJ, Guimarães PM, Pereira TD, Galhardo I, Silva JP, Brasileiro ACM, Oliveira RS, Silva PÍT, Vadez V et al (2012) The effect of tetraploidization of wild Arachis on leaf morphology and other drought-related traits. Environ Exp Bot 84:17–24

    Google Scholar 

  • Liang X, Chen X, Hong Y, Liu H, Zhou G, Li S, Guo B (2009) Utility of EST-derived SSR in cultivated peanut Arachis hypogaea L. and Arachis wild species. BMC Plant Biol 9:35

    PubMed Central  PubMed  Google Scholar 

  • Lu J, Pickersgill B (1993) Isozyme variation and species relationships in peanut and its wild relatives Arachis L.—Leguminosae. Theor Appl Genet 85:550–560

    CAS  PubMed  Google Scholar 

  • Macedo SE, Moretzsohn MC, Leal-Bertioli SCM, Alves DMT, Gouvea EG, Azevedo VCR, Bertioli DJ (2012) Development and characterization of highly polymorphic long TC repeat microsatellite markers for genetic analysis of peanut. BMC Res Notes 5:86

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mallikarjuna N, Hoisington D (2009) Peanut improvement: production of fertile hybrids and backcross progeny between Arachis hypogaea and A. kretschmeri. Food Sec 1:457–462

    Google Scholar 

  • Mallikarjuna N, Sastri DC (2002) Morphological, cytological and disease resistance studies of the intersectional hybrid between Arachis hypogaea L. and A. glabrata Benth. Euphytica 126:161–167

    CAS  Google Scholar 

  • Mallikarjuna N, Tandra SK (2006) Use of 2n pollen in generating interspecific derivatives of groundnut. Int Arachis Newslett 26:8–10

    Google Scholar 

  • Mallikarjuna N, Senthilvel S, Hoisington D (2011) Development of new sources of tetraploid Arachis to broaden the genetic base of cultivated groundnut (Arachis hypogaea) L. Genet Resour Crop Evol 58:889–907

    Google Scholar 

  • Mallikarjuna N, Jadhav D, Reddy K, Husain F, Das K (2012a) Screening new Arachis amphidiploids, and autotetraploids for resistance to late leaf spot by detached leaf technique. Eur J Plant Pathol 132:17–21

    Google Scholar 

  • Mallikarjuna N, Srikanth S, Vellanki RK, Jadhav DR, Das K, Upadhyaya HD (2012b) Meiotic analysis of the hybrids between cultivated and synthetic tetraploid groundnuts. Plant Breed 131:135–138

    Google Scholar 

  • Milla SR, Isleib TG, Stalker HT (2005) Taxonomic relationships among Arachis sect. Arachis species as revealed by AFLP markers. Genome 48:1–11

    CAS  PubMed  Google Scholar 

  • Mondal S, Badigannavar A, D’Souza S (2012) Molecular tagging of a rust resistance gene in cultivated groundnut (Arachis hypogaea) L. introgressed from Arachis cardenasii. Mol Breed 29:467–476

    CAS  Google Scholar 

  • Moretzsohn M, Hopkins M, Mitchell S, Kresovich S, Valls JFM, Ferreira M (2004) Genetic diversity of peanut (Arachis hypogaea) L. and its wild relatives based on the analysis of hypervariable regions of the genome. BMC Plant Biol 4:11

    PubMed Central  Google Scholar 

  • Moretzsohn M, Leoi L, Proite K, Guimarães P, Leal-Bertioli S, Gimenes M, Martins W, Valls J, Grattapaglia D, Bertioli D (2005) A microsatellite-based, gene-rich linkage map for the AA genome of Arachis (Fabaceae). Theor Appl Genet 111:1060–1071

    CAS  PubMed  Google Scholar 

  • Moretzsohn M, Barbosa A, Alves-Freitas D, Teixeira C, Leal-Bertioli S, Guimaraes P, Pereira R, Lopes C, Cavallari M, Valls JFM, Bertioli DJ, Gimenes MA (2009) A linkage map for the B-genome of Arachis (Fabaceae) and its synteny to the A-genome. BMC Plant Biol 9:40

    PubMed Central  PubMed  Google Scholar 

  • Moretzsohn MC, Gouvea EG, Inglis PW, Leal-Bertioli SCM, Valls JFM, Bertioli DJ (2013) A study of the relationships of cultivated peanut (Arachis hypogaea) and its most closely related wild species using intron sequences and microsatellite markers. Ann Bot 111:113–126

    CAS  PubMed  Google Scholar 

  • Nagy ED, Chu Y, Guo Y, Khanal S, Tang S, Li Y, Dong WB, Timper P, Taylor C, Ozias-Akins P, Holbrook CC, Beilinson V, Nielsen NC, Stalker HT, Knapp SJ (2010) Recombination is suppressed in an alien introgression in peanut harboring Rma, a dominant root-knot nematode resistance gene. Mol Breed 26:357–370

    CAS  Google Scholar 

  • Nautiyal PC, Rajgopal K, Zala PV, Pujari DS, Basu M, Dhadhal BA, Nandre BM (2008) Evaluation of wild Arachis species for abiotic stress tolerance: I. Thermal stress and leaf water relations. Euphytica 159:43–57

    Google Scholar 

  • Paik-Ro OG, Smith RL, Knaulf DA (1992) Restriction fragment length polymorphism evaluation of six peanut species within the Arachis section. Theor Appl Genet 84:201–208

    CAS  PubMed  Google Scholar 

  • Palmieri DA, Hoshino AA, Bravo JP, Lopes CR, Gimenes MA (2002) Isolation and characterization of microsatellite loci from the forage species Arachis pintoi genus Arachis. Mol Ecol Notes 2:551–553

    CAS  Google Scholar 

  • Palmieri DA, Bechara MD, Curi RA, Gimenes MA, Lopes CR (2005) Novel polymorphic microsatellite markers in section Caulorrhizae (Arachis, Fabaceae). Mol Ecol Notes 5:77–79

    CAS  Google Scholar 

  • Pande S, Rao JN (2001) Resistance of wild Arachis species to late leaf spot and rust in greenhouse trials. Plant Dis 85:851–855

    Google Scholar 

  • Peñaloza APS, Valls JFM (1997) Contagem do número cromossômico em acessos de Arachis decora (Leguminosae). Simpósio Latino-Americano De Recursos Genéticos Vegetais 1:39

    Google Scholar 

  • Proite K, Leal-Bertioli SCM, Bertioli DJ, Moretzsohn MC, Da Silva FR, Martins NF, Guimarães PM (2007) ESTs from a wild Arachis species for gene discovery and marker development. BMC Plant Biol 7:7

    PubMed Central  PubMed  Google Scholar 

  • Proite K, Carneiro R, Falcão R, Gomes A, Leal-Bertioli S, Guimarães P, Bertioli D (2008) Post-infection development and histopathology of Meloidogyne arenaria race 1 on Arachis spp. Plant Pathol 57:974–980

    Google Scholar 

  • Qin H, Feng S, Chen C, Guo Y, Knapp S, Culbreath A, He G, Wang ML, Zhang X, Holbrook CC, Ozias-Akins P, Guo B (2012) An integrated genetic linkage map of cultivated peanut (Arachis hypogaea) L. constructed from two RIL populations. Theor Appl Genet 124:653–664

    PubMed  Google Scholar 

  • Raina SN, Rani V, Kojima T, Ogihara Y, Singh KP, Devarumath RM (2001) RAPD and ISSR fingerprints as useful genetic markers for analysis of genetic diversity, varietal identification, and phylogenetic relationships in peanut Arachis hypogaea cultivars and wild species. Genome 44:763–772

    CAS  PubMed  Google Scholar 

  • Reddy AS, Reddy LJ, Mallikarjuna N, Abdurahman MD, Reddy YV, Bramel PJ, Reddy DVR (2000) Identification of resistance to Peanut bud necrosis virus PBNV in wild Arachis germplasm. Ann Appl Biol 137:135–139

    Google Scholar 

  • Revoredo CL, Fletcher S (2002) World peanut market: an overview of the past 30 years. Georgia Agricultural Experiment Stations College of Agricultural and Environmental Sciences the University of Georgia, Athens, GA

    Google Scholar 

  • Robledo G, Seijo G (2010) Species relationships among the wild B genome of Arachis species section Arachis based on FISH mapping of rDNA loci and heterochromatin detection: a new proposal for genome arrangement. Theor Appl Genet 121:1033–1046

    PubMed  Google Scholar 

  • Seijo JG, Lavia GI, Fernandez A, Krapovickas A, Ducasse D, Moscone EA (2004) Physical mapping of the 5S and 18S–25S rRNA genes by FISH as evidence that Arachis duranensis and A. ipaënsis are the wild diploid progenitors of A. hypogaea (Leguminosae). Am J Bot 91:1294–1303

    CAS  PubMed  Google Scholar 

  • Seijo G, Lavia GI, Fernández A, Krapovickas A, Ducasse DA, Bertioli DJ, Moscone EA (2007) Genomic relationships between the cultivated peanut Arachis hypogaea, Leguminosae and its close relatives revealed by double GISH. Am J Bot 94:1963–1971

    PubMed  Google Scholar 

  • Sharma SB, Ansari MA, Varaprasad KS, Singh AK, Reddy LJ (1999) Resistance to Meloidogyne javanica in wild Arachis species. Genet Resour Crop Evol 46:557–568

    Google Scholar 

  • Shirasawa K, Hirakawa H, Tabata S, Hasegawa M, Kiyoshima H, Suzuki S, Sasamoto S, Watanabe A, Fujishiro T, Isobe S (2012a) Characterization of active miniature inverted-repeat transposable elements in the peanut genome. Theor Appl Genet 124:1429–1438

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shirasawa K, Koilkonda P, Aoki K, Hirakawa H, Tabata S, Watanabe M, Hasegawa M, Kiyoshima H, Suzuki S, Kuwata C, Naito Y, Kuboyama T, Nakaya A, Sasamoto S, Watanabe A, Kato M, Kawashima K, Kishida Y, Kohara M, Kurabayashi A, Takahashi C, Tsuruoka H, Wada T, Isobe S (2012b) In silico polymorphism analysis for the development of simple sequence repeat and transposon markers and construction of linkage map in cultivated peanut. BMC Plant Biol 12:80

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shirasawa K, Bertioli DJ, Varshney RK, Moretzsohn MC, Leal-Bertioli SCM, Thudi M, Pandey MK, Rami JF, Foncéka D, Gowda MV, Qin H, Guo B, Hong Y, Liang X, Hirakawa H, Tabata S, Isobe S (2013) Integrated consensus map of cultivated peanut and wild relatives reveals structures of the A and B genomes of Arachis and divergence of the legume genomes. DNA Res 20:173–184

    CAS  PubMed Central  PubMed  Google Scholar 

  • Simpson CE (2001) Use of wild Arachis species/introgression of genes into A. hypogaea L. Peanut Sci 28:114–116

    CAS  Google Scholar 

  • Simpson CE, Starr JL (2001) Registration of “COAN” peanut. Crop Sci 41:918

    Google Scholar 

  • Simpson CE, Nelson SC, Starr JL, Woodard KE, Smith OD (1993) Registration of TxAG-6 and TxAG-7 peanut germplasm lines. Crop Sci 33:1418

    Google Scholar 

  • Simpson CE, Starr JL, Church GT, Burow MD, Paterson AH (2003) Registration of “NemaTAM” peanut. Crop Sci 43:1561

    Google Scholar 

  • Singh AK, Moss JP (1982) Utilization of wild relatives in genetic improvement of Arachis hypogaea L. Theor Appl Genet 61:305–314

    CAS  PubMed  Google Scholar 

  • Singh F, Oswalt DL (1991) Genetics and breeding of groundnut. Available: http://ec2-50-19-248-237.compute-1.amazonaws.com/2754/. Accessed 4 June 2013

  • Singh AK, Subrahmanyam P, Gurtu S (1996) Variation in a wild groundnut species, Arachis duranensis Krapov. & W.C. Gregory. Genet Resour Crop Evol 43:135–142

    Google Scholar 

  • Smartt J, Gregory WC (1967) Interspecific cross-compatibility between the cultivated peanut Arachis hypogaea L. and other members of the genus Arachis. Oleagineux 22:455–459

    Google Scholar 

  • Song GQ, Li MJ, Xiao H, Wang XJ, Tang RH, Xia H, Zhao CZ, Bi YP (2010) EST sequencing and SSR marker development from cultivated peanut (Arachis hypogaea) L. Electron J Biotechnol 13:7–8

    Google Scholar 

  • Stalker HT (1984) Utilizing Arachis cardenasii as a source of Cercospora leafspot resistance for peanut improvement. Euphytica 33:529–538

    Google Scholar 

  • Stalker HT (1991) A new species in section Arachis of peanuts with a D genome. Am J Bot 78:630–637

    Google Scholar 

  • Stalker HT, Beute MK (1993) Registration of four leafspot-resistant peanut germplasm lines. Crop Sci 33:1117

    Google Scholar 

  • Stalker HT, Lynch RE (2002) Registration of four insect-resistant peanut germplasm lines. Crop Sci 42:313–314

    PubMed  Google Scholar 

  • Stalker HT, Wynne JC, Company M (1979) Variation in progenies of an Arachis hypogaea × diploid wild species hybrid. Euphytica 28:675–684

    Google Scholar 

  • Stalker HT, Young CT, Jones TM (1989) A survey of the fatty acids of peanut species. Oléagineux 44:419–424

    CAS  Google Scholar 

  • Stalker HT, Beute MK, Shew BB, Barker KR (2002a) Registration of two root-knot nematode-resistant peanut germplasm lines. Crop Sci 42:312–313

    PubMed  Google Scholar 

  • Stalker HT, Beute MK, Shew BB, Isleib TG (2002b) Registration of five leaf spot-resistant peanut germplasm lines. Crop Sci 42:314

    PubMed  Google Scholar 

  • Subramanian V, Gurtu S, Rao RCN, Nigam SN (2000) Identification of DNA polymorphism in cultivated groundnut using random amplified polymorphic DNA RAPD assay. Genome 43:656–660

    CAS  PubMed  Google Scholar 

  • Tallury SP, Hilu KW, Milla SR, Friend SA, Alsaghir M, Stalker HT, Quandt D (2005) Genomic affinities in Arachis section Arachis (Fabaceae): molecular and cytogenetic evidence. Theor Appl Genet 111:1229–1237

    CAS  PubMed  Google Scholar 

  • Tang R, Gao G, He L, Han Z, Shan S, Zhong R, Zhou C, Jiang J, Li Y, Zhuang W (2007) Genetic diversity in cultivated groundnut based on SSR markers. J Genet Genomics 34:449–459

    CAS  PubMed  Google Scholar 

  • Tanksley SD, Nelson JC (1996) Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 92:191–203

    CAS  PubMed  Google Scholar 

  • Timper P, Kvien CK, Holbrook CC, Culbreath AK (2008) Registration of “Tifguard” peanut. J Plant Regist 2:92–94

    Google Scholar 

  • Upadhyaya H, Dwivedi S, Nadaf H, Singh S (2011a) Phenotypic diversity and identification of wild Arachis accessions with useful agronomic and nutritional traits. Euphytica 182:103–115

    Google Scholar 

  • Upadhyaya HD, Sharma S, Dwivedi SL (2011b) Arachis. In: Kole C (ed) Wild crop relatives: genomic and breeding resources. Springer, Heidelberg, pp 1–19

    Google Scholar 

  • Valls JFM, Simpson CE (2005) New species of Arachis (Leguminosae) from Brazil, Paraguay and Bolivia. Bonplandia 14:35–63

    Google Scholar 

  • Varman VP (1999) A foliar disease resistant line developed through interspecific hybridization in groundnut (Arachis hypogaea). Indian J Agric Sci 69:67–68

    Google Scholar 

  • Varshney R, Bertioli D, Moretzsohn M, Vadez V, Krishnamurthy L, Aruna R, Nigam S, Moss B, Seetha K, Ravi K, He G, Knapp SJ, Hoisington DA (2009a) The first SSR-based genetic linkage map for cultivated groundnut (Arachis hypogaea) L. Theor Appl Genet 118:729–739

    CAS  PubMed  Google Scholar 

  • Varshney RK, Mahendar T, Aruna R, Nigam SN, Neelima K, Vadez V, Hoisington DA (2009b) High level of natural variation in a groundnut (Arachis hypogaea) L. germplasm collection assayed by selected informative SSR markers. Plant Breed 128:486–494

    CAS  Google Scholar 

  • Vishnuvardhan KM, Vasanthi RP, Reddy KH (2011) Combining ability of yield, yield traits and resistance to late leaf spot and rust in groundnut. J SAT Agric Res 9:1–6

    Google Scholar 

  • Wang CT, Yang XD, Chen DX, Yu SL, Liu GZ, Tang YY, Xu JZ (2007) Isolation of simple sequence repeats from groundnut. Electron J Biotechnol 10:473–480

    CAS  Google Scholar 

  • Wang ML, Barkley NA, Chinnan M, Stalker HT, Pittman RN (2010) Oil content and fatty acid composition variability in wild peanut species. Plant Genet Resour 8:232–234

    Google Scholar 

  • Wang H, Penmetsa R, Yuan M, Gong L, Zhao Y, Guo B, Farmer A, Rosen B, Gao J, Isobe S, Bertioli DJ, Varshney RK, Cook DR, He G (2012) Development and characterization of BAC-end sequence derived SSRs, and their incorporation into a new higher density genetic map for cultivated peanut (Arachis hypogaea) L. BMC Plant Biol 12:10

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yuan M, Gong L, Meng R, Li S, Dang P, Guo B, He G (2010) Development of trinucleotide (GGCn) SSR markers in peanut (Arachis hypogaea) L. Electron J Biotechnol 13:5–6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-François Rami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rami, JF., Leal-Bertioli, S.C.M., Foncéka, D., Moretzsohn, M.C., Bertioli, D.J. (2014). Groundnut. In: Pratap, A., Kumar, J. (eds) Alien Gene Transfer in Crop Plants, Volume 2. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9572-7_12

Download citation

Publish with us

Policies and ethics