Skip to main content

Central Nervous System: The Brain and Cerebrospinal Fluid

  • Chapter
  • First Online:
Pediatric Nuclear Medicine and Molecular Imaging

Abstract

This chapter will review methodology of single photon emission computed tomography (SPECT) and positron emission tomography (PET), radiopharmaceuticals, imaging instrumentation, image fusion, and clinical applications in children. Both SPECT and PET can depict regional cerebral perfusion, glucose metabolism, and other functions and provide images of the location, quantification, and biokinetics of radiopharmaceutical agents. In addition, these techniques can detect rapid changes due to normal brain activity in different functional conditions or those caused by pharmacologic or cognitive stimulation. Improvements in the production and distribution of 18F-FDG and better PET systems have facilitated the widespread use of PET. Advances in imaging systems and data processing in SPECT have resulted in systems that are simpler to operate and that yield 3D images of high functional and anatomic resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Isacson O. On neuronal health. Trends Neurosci. 1993;16(8):306–8.

    CAS  PubMed  Google Scholar 

  2. Kavdel ER, Schwartz JH. Principles of neural science. New York: Elsevier Science; 1991.

    Google Scholar 

  3. Gallen CC, Sobel DF, Lewine JD, et al. Neuromagnetic mapping of brain function. Radiology. 1993;187(3):863–7.

    CAS  PubMed  Google Scholar 

  4. Ingvar DH, Lassen NA. Quantitative determination of regional cerebral blood flow in man. Lancet. 1961;2:806–7.

    Google Scholar 

  5. Habboush IH, Mitchell KD, Mulkern RV, Barnes PD, Treves ST. Registration and alignment of three-dimensional images: an interactive visual approach. Radiology. 1996;199(2):573–8.

    CAS  PubMed  Google Scholar 

  6. Chugani HT, Phelps ME, Mazziotta JC. Positron emission tomography study of human brain functional development. Ann Neurol. 1987;22(4):487–97.

    CAS  PubMed  Google Scholar 

  7. Chugani HT. Metabolic imaging: a window on brain development and plasticity. Neuroscientist. 1999;5:29–40.

    Google Scholar 

  8. Rubinstein M, Denays R, Ham HR, et al. Functional imaging of brain maturation in humans using iodine-123 iodoamphetamine and SPECT. J Nucl Med. 1989;30(12):1982–5.

    CAS  PubMed  Google Scholar 

  9. Chiron C, Raynaud C, Maziere B, et al. Changes in regional cerebral blood flow during brain maturation in children and adolescents. J Nucl Med. 1992;33(5):696–703.

    CAS  PubMed  Google Scholar 

  10. Chugani HT, Phelps ME. Maturational changes in cerebral function in infants determined by 18FDG positron emission tomography. Science. 1986;231(4740):840–3.

    CAS  PubMed  Google Scholar 

  11. Chugani HT. A critical period of brain development: studies of cerebral glucose utilization with PET. Prev Med. 1998;27(2):184–8.

    CAS  PubMed  Google Scholar 

  12. Chugani HT, Muller RA, Chugani DC. Functional brain reorganization in children. Brain Dev. 1996;18(5):347–56.

    CAS  PubMed  Google Scholar 

  13. Wyllie E, Rothner AD, Luders H. Partial seizures in children: clinical features, medical treatment, and surgical considerations. Pediatr Clin North Am. 1989;36(2):343–64.

    CAS  PubMed  Google Scholar 

  14. Vossler D, Wyler AR. Epilepsy surgery. 2004. http://www.emedicine.com/med/topic3177.htm. Accessed 21 Dec 2004.

  15. National Institutes of Health Consensus Conference. Surgery for epilepsy. JAMA. 1990;264(6):729–33.

    Google Scholar 

  16. Koo CW, Devinsky O, Hari K, Balasny J, Noz ME, Kramer EL. Stratifying differences on ictal/interictal subtraction SPECT images. Epilepsia. 2003;44(3):379–86.

    PubMed  Google Scholar 

  17. Rowe CC, Berkovic SF, Austin MC, McKay WJ, Bladin PF. Patterns of postictal cerebral blood flow in temporal lobe epilepsy: qualitative and quantitative analysis. Neurology. 1991;41(7):1096–103.

    CAS  PubMed  Google Scholar 

  18. Rowe CC, Berkovic SF, Sia ST, et al. Localization of epileptic foci with postictal single photon emission computed tomography. Ann Neurol. 1989;26(5):660–8.

    CAS  PubMed  Google Scholar 

  19. Kuzniecky R, Mountz JM, Wheatley G, Morawetz R. Ictal single-photon emission computed tomography demonstrates localized epileptogenesis in cortical dysplasia. Ann Neurol. 1993;34(4):627–31.

    CAS  PubMed  Google Scholar 

  20. Adams C, Hwang PA, Gilday DL, Armstrong DC, Becker LE, Hoffman HJ. Comparison of SPECT, EEG, CT, MRI, and pathology in partial epilepsy. Pediatr Neurol. 1992;8(2):97–103.

    CAS  PubMed  Google Scholar 

  21. Chiron C, Raynaud C, Dulac O, Tzourio N, Plouin P, Tran-Dinh S. Study of the cerebral blood flow in partial epilepsy of childhood using the SPECT method. J Neuroradiol. 1989;16(4):317–24.

    CAS  PubMed  Google Scholar 

  22. Miles D, Holmes G, Pearl P, et al. Comparison of CT, MRI, SPECT and BEAM in evaluation of pediatric epilepsy candidates in focal surgical resection. Epilepsia. 1990;31:672.

    Google Scholar 

  23. Uvebrant P, Bjure J, Hedstrom A, Ekholm S. Brain single photon emission computed tomography (SPECT) in neuropediatrics. Neuropediatrics. 1991;22(1):3–9.

    CAS  PubMed  Google Scholar 

  24. Vles JS, Demandt E, Ceulemans B, de Roo M, Casaer PJ. Single photon emission computed tomography (SPECT) in seizure disorders in childhood. Brain Dev. 1990;12(4):385–9.

    CAS  PubMed  Google Scholar 

  25. Packard AB, Roach PJ, Davis RT. Ictal and interictal technetium-99m-bicisate brain SPECT in children with refractory epilepsy. J Nucl Med. 1996;37(7):1101–6.

    CAS  PubMed  Google Scholar 

  26. Kaminska A, Chiron C, Ville D, et al. Ictal SPECT in children with epilepsy: comparison with intracranial EEG and relation to postsurgical outcome. Brain. 2003;126(Pt 1):248–60.

    CAS  PubMed  Google Scholar 

  27. Davis RT, Treves ST, Zurakowski D, Bauer SB. Ictal perfusion brain SPECT in pediatric patients with intractable epilepsy: a multidisciplinary approach. J Nucl Med Technol. 1996;24:219–22.

    Google Scholar 

  28. O'Brien TJ, So EL, Mullan BP, et al. Subtraction peri-ictal SPECT is predictive of extratemporal epilepsy surgery outcome. Neurology. 2000;55(11):1668–77.

    PubMed  Google Scholar 

  29. Buchhalter JR, So EL. Advances in computer-assisted single-photon emission computed tomography (SPECT) for epilepsy surgery in children. Acta Paediatr Suppl. 2004;93(445):32–5; discussion 36–7.

    CAS  PubMed  Google Scholar 

  30. O'Brien TJ, So EL, Mullan BP, et al. Subtraction ictal SPECT co-registered to MRI improves clinical usefulness of SPECT in localizing the surgical seizure focus. Neurology. 1998;50(2):445–54.

    PubMed  Google Scholar 

  31. Shoeb A, Edwards H, Connolly J, Bourgeois B, Treves ST, Guttag J. Patient-specific seizure onset detection. Epilepsy Behav. 2004;5(4):483–98.

    PubMed  Google Scholar 

  32. Hrachovy RA, Frost Jr JD. Infantile spasms. Pediatr Clin North Am. 1989;36(2):311–29.

    CAS  PubMed  Google Scholar 

  33. Chugani HT, Shewmon DA, Shields WD, et al. Surgery for intractable infantile spasms: neuroimaging perspectives. Epilepsia. 1993;34(4):764–71.

    CAS  PubMed  Google Scholar 

  34. Chugani HT, Shields WD, Shewmon DA, Olson DM, Phelps ME, Peacock WJ. Infantile spasms: I. PET identifies focal cortical dysgenesis in cryptogenic cases for surgical treatment. Ann Neurol. 1990;27(4):406–13.

    CAS  PubMed  Google Scholar 

  35. O'Tuama LA, Urion DK, Janicek MJ, Treves ST, Bjornson B, Moriarty JM. Regional cerebral perfusion in Landau-Kleffner syndrome and related childhood aphasias. J Nucl Med. 1992;33(10):1758–65.

    PubMed  Google Scholar 

  36. Chiron C, Dulac O, Bulteau C, et al. Study of regional cerebral blood flow in West syndrome. Epilepsia. 1993;34(4):707–15.

    CAS  PubMed  Google Scholar 

  37. Otsubo H, Hwang PA, Jay V, et al. Focal cortical dysplasia in children with localization-related epilepsy: EEG, MRI, and SPECT findings. Pediatr Neurol. 1993;9(2):101–7.

    CAS  PubMed  Google Scholar 

  38. Miyazaki M, Hashimoto T, Fujii E, Tayama M, Kuroda Y. Infantile spasms: localized cerebral lesions on SPECT. Epilepsia. 1994;35(5):988–92.

    CAS  PubMed  Google Scholar 

  39. Haginoya K, Munakata M, Yokoyama H, et al. Mechanism of tonic spasms in West syndrome viewed from ictal SPECT findings. Brain Dev. 2001;23(7):496–501.

    CAS  PubMed  Google Scholar 

  40. Koh S, Jayakar P, Resnick T, Alvarez L, Liit RE, Duchowny M. The localizing value of ictal SPECT in children with tuberous sclerosis complex and refractory partial epilepsy. Epileptic Disord. 1999;1(1):41–6.

    CAS  PubMed  Google Scholar 

  41. Chugani DC, Chugani HT, Muzik O, et al. Imaging epileptogenic tubers in children with tuberous sclerosis complex using alpha-[11C]methyl-L-tryptophan positron emission tomography. Ann Neurol. 1998;44(6):858–66.

    CAS  PubMed  Google Scholar 

  42. Kagawa K, Chugani DC, Asano E, et al. Epilepsy surgery outcome in children with tuberous sclerosis complex evaluated with alpha-[11C]methyl-L-tryptophan positron emission tomography (PET). J Child Neurol. 2005;20(5):429–38.

    PubMed  Google Scholar 

  43. Roach ES, Garcia JC, McLean Jr WT. Cerebrovascular disease in children. Am Fam Physician. 1984;30(5):215–27.

    CAS  PubMed  Google Scholar 

  44. Yamashiro Y, Takahashi H, Takahashi K. Cerebrovascular Moyamoya disease. Eur J Pediatr. 1984;142(1):44–50.

    CAS  PubMed  Google Scholar 

  45. Feole JB, Ali A, Fordham EW, Huckman M, Shenker DM. Serial SPECT imaging in moyamoya using I-123 IMP. A method of noninvasive evaluation and follow-up. Clin Nucl Med. 1993;18(1):43–5.

    CAS  PubMed  Google Scholar 

  46. Kobayashi H, Hayashi M, Handa Y, Kabuto M, Noguchi Y, Aradachi H. EC-IC bypass for adult patients with moyamoya disease. Neurol Res. 1991;13(2):113–6.

    CAS  PubMed  Google Scholar 

  47. Shahar E, Gilday DL, Hwang PA, Cohen EK, Lambert R. Pediatric cerebrovascular disease. Alterations of regional cerebral blood flow detected by TC 99m-HMPAO SPECT. Arch Neurol. 1990;47(5):578–84.

    CAS  PubMed  Google Scholar 

  48. Bourgeois M, Aicardi J, Goutieres F. Alternating hemiplegia of childhood. J Pediatr. 1993;122(5 Pt 1):673–9.

    CAS  PubMed  Google Scholar 

  49. Zupanc ML, Dobkin JA, Perlman SB. 123I-iodoamphetamine SPECT brain imaging in alternating hemiplegia. Pediatr Neurol. 1991;7(1):35–8.

    CAS  PubMed  Google Scholar 

  50. Mikati MA, Maguire H, Barlow CF, et al. A syndrome of autosomal dominant alternating hemiplegia: clinical presentation mimicking intractable epilepsy; chromosomal studies; and physiologic investigations. Neurology. 1992;42(12):2251–7.

    CAS  PubMed  Google Scholar 

  51. Clinical practice guideline: diagnosis and evaluation of the child with attention-deficit/hyperactivity disorder. American Academy of Pediatrics. Pediatrics. 2000;105(5):1158–70.

    Google Scholar 

  52. Lou HC, Henriksen L, Bruhn P. Focal cerebral hypoperfusion in children with dysphasia and/or attention deficit disorder. Arch Neurol. 1984;41(8):825–9.

    CAS  PubMed  Google Scholar 

  53. Lou HC, Henriksen L, Bruhn P, Borner H, Nielsen JB. Striatal dysfunction in attention deficit and hyperkinetic disorder. Arch Neurol. 1989;46(1):48–52.

    CAS  PubMed  Google Scholar 

  54. Zametkin AJ, Nordahl TE, Gross M, et al. Cerebral glucose metabolism in adults with hyperactivity of childhood onset. N Engl J Med. 1990;323(20):1361–6.

    CAS  PubMed  Google Scholar 

  55. Zametkin AJ, Liebenauer LL, Fitzgerald GA, et al. Brain metabolism in teenagers with attention-deficit hyperactivity disorder. Arch Gen Psychiatry. 1993;50(5):333–40.

    CAS  PubMed  Google Scholar 

  56. Lorberboym M, Watemberg N, Nissenkorn A, Nir B, Lerman-Sagie T. Technetium 99m ethylcysteinate dimer single-photon emission computed tomography (SPECT) during intellectual stress test in children and adolescents with pure versus comorbid attention-deficit hyperactivity disorder (ADHD). J Child Neurol. 2004;19(2):91–6.

    PubMed  Google Scholar 

  57. Lou HC, Henriksen L, Bruhn P. Focal cerebral dysfunction in developmental learning disabilities. Lancet. 1990;335(8680):8–11.

    CAS  PubMed  Google Scholar 

  58. Langleben DD, Acton PD, Austin G, et al. Effects of methylphenidate discontinuation on cerebral blood flow in prepubescent boys with attention deficit hyperactivity disorder. J Nucl Med. 2002;43(12):1624–9.

    CAS  PubMed  Google Scholar 

  59. Langleben DD, Austin G, Krikorian G, Ridlehuber HW, Goris ML, Strauss HW. Interhemispheric asymmetry of regional cerebral blood flow in prepubescent boys with attention deficit hyperactivity disorder. Nucl Med Commun. 2001;22(12):1333–40.

    CAS  PubMed  Google Scholar 

  60. Kim BN, Lee JS, Cho SC, Lee DS. Methylphenidate increased regional cerebral blood flow in subjects with attention deficit/hyperactivity disorder. Yonsei Med J. 2001;42(1):19–29.

    CAS  PubMed  Google Scholar 

  61. Gustafsson P, Thernlund G, Ryding E, Rosen I, Cederblad M. Associations between cerebral blood-flow measured by single photon emission computed tomography (SPECT), electro-encephalogram (EEG), behaviour symptoms, cognition and neurological soft signs in children with attention-deficit hyperactivity disorder (ADHD). Acta Paediatr. 2000;89(7):830–5.

    CAS  PubMed  Google Scholar 

  62. Arndt S, Cohen G, Alliger RJ, Swayze 2nd VW, Andreasen NC. Problems with ratio and proportion measures of imaged cerebral structures. Psychiatry Res. 1991;40(1):79–89.

    CAS  PubMed  Google Scholar 

  63. Barbour RL, Graber HL, Pei Y, Zhong S, Schmitz CH. Optical tomographic imaging of dynamic features of dense-scattering media. J Opt Soc Am A Opt Image Sci Vis. 2001;18(12):3018–36.

    CAS  PubMed  Google Scholar 

  64. Franceschini MA, Toronov V, Fillaci ME, Gratton E, Fantini S. On-line optical imaging of the human brain with 160-ms temporal resolution. Opt Express. 2000;6:49–57.

    CAS  PubMed  Google Scholar 

  65. Volkow ND, Wang GJ, Fowler JS, et al. Effects of methylphenidate on regional brain glucose metabolism in humans: relationship to dopamine D2 receptors. Am J Psychiatry. 1997;154(1):50–5.

    CAS  PubMed  Google Scholar 

  66. Volkow ND, Wang G, Fowler JS, et al. Therapeutic doses of oral methylphenidate significantly increase extracellular dopamine in the human brain. J Neurosci. 2001;21(2):RC121.

    CAS  PubMed  Google Scholar 

  67. Dougherty DD, Bonab AA, Spencer TJ, Rauch SL, Madras BK, Fischman AJ. Dopamine transporter density in patients with attention deficit hyperactivity disorder. Lancet. 1999;354(9196):2132–3.

    CAS  PubMed  Google Scholar 

  68. Krause KH, Dresel SH, Krause J, Kung HF, Tatsch K. Increased striatal dopamine transporter in adult patients with attention deficit hyperactivity disorder: effects of methylphenidate as measured by single photon emission computed tomography. Neurosci Lett. 2000;285(2):107–10.

    CAS  PubMed  Google Scholar 

  69. van Dyck CH, Quinlan DM, Cretella LM, et al. Unaltered dopamine transporter availability in adult attention deficit hyperactivity disorder. Am J Psychiatry. 2002;159(2):309–12.

    PubMed  Google Scholar 

  70. Ilgin N, Senol S, Gucuyener K, Gokcora N, Sener S. Is increased D2 receptor availability associated with response to stimulant medication in ADHD. Dev Med Child Neurol. 2001;43(11):755–60.

    CAS  PubMed  Google Scholar 

  71. Koepp MJ, Gunn RN, Lawrence AD, et al. Evidence for striatal dopamine release during a video game. Nature. 1998;393(6682):266–8.

    CAS  PubMed  Google Scholar 

  72. Strafella AP, Paus T, Barrett J, Dagher A. Repetitive transcranial magnetic stimulation of the human prefrontal cortex induces dopamine release in the caudate nucleus. J Neurosci. 2001;21(15):RC157.

    CAS  PubMed  Google Scholar 

  73. Volkow ND, Wang GJ, Fowler JS, et al. Relationship between blockade of dopamine transporters by oral methylphenidate and the increases in extracellular dopamine: therapeutic implications. Synapse. 2002;43(3):181–7.

    CAS  PubMed  Google Scholar 

  74. Castellanos FX. Proceed, with caution: SPECT cerebral blood flow studies of children and adolescents with attention deficit hyperactivity disorder. J Nucl Med. 2002;43(12):1630–3.

    PubMed  Google Scholar 

  75. Denays R, Tondeur M, Foulon M, et al. Regional brain blood flow in congenital dysphasia: studies with technetium-99m HM-PAO SPECT. J Nucl Med. 1989;30(11):1825–9.

    CAS  PubMed  Google Scholar 

  76. Denays R, Tondeur M, Toppet V, et al. Cerebral palsy: initial experience with Tc-99m HMPAO SPECT of the brain. Radiology. 1990;175(1):111–6.

    CAS  PubMed  Google Scholar 

  77. Mauk JE. Autism and pervasive developmental disorders. Pediatr Clin North Am. 1993;40(3):567–78.

    CAS  PubMed  Google Scholar 

  78. Rumsey JM, Duara R, Grady C, et al. Brain metabolism in autism. Resting cerebral glucose utilization rates as measured with positron emission tomography. Arch Gen Psychiatry. 1985;42(5):448–55.

    CAS  PubMed  Google Scholar 

  79. Heh CW, Smith R, Wu J, et al. Positron emission tomography of the cerebellum in autism. Am J Psychiatry. 1989;146(2):242–5.

    CAS  PubMed  Google Scholar 

  80. De Volder AG, Bol A, Michel C, Cogneau M, Goffinet AM. Cerebral glucose metabolism in autistic children. Study and positron emission tomography. Acta Neurol Belg. 1988;88(2):75–90.

    PubMed  Google Scholar 

  81. Horwitz B, Rumsey JM, Grady CL, Rapoport SI. The cerebral metabolic landscape in autism. Intercorrelations of regional glucose utilization. Arch Neurol. 1988;45(7):749–55.

    CAS  PubMed  Google Scholar 

  82. Zilbovicius M, Garreau B, Tzourio N, et al. Regional cerebral blood flow in childhood autism: a SPECT study. Am J Psychiatry. 1992;149(7):924–30.

    CAS  PubMed  Google Scholar 

  83. George M, Ring H, Costa D, et al. Neuroactivation and neuroimaging with SPET. London: Springer; 1991.

    Google Scholar 

  84. Chugani DC, Muzik O, Behen M, et al. Developmental changes in brain serotonin synthesis capacity in autistic and nonautistic children. Ann Neurol. 1999;45(3):287–95.

    CAS  PubMed  Google Scholar 

  85. Ingvar DH. Measurements of regional cerebral blood flow and metabolism in psychopathological states. Eur Neurol. 1981;20(3):294–6.

    CAS  PubMed  Google Scholar 

  86. Weinberger DR, Berman KF, Zec RF. Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia. I. Regional cerebral blood flow evidence. Arch Gen Psychiatry. 1986;43(2):114–24.

    CAS  PubMed  Google Scholar 

  87. Andreasen NC, Rezai K, Alliger R, et al. Hypofrontality in neuroleptic-naive patients and in patients with chronic schizophrenia. Assessment with xenon 133 single-photon emission computed tomography and the Tower of London. Arch Gen Psychiatry. 1992;49(12):943–58.

    CAS  PubMed  Google Scholar 

  88. Wolkin A, Sanfilipo M, Wolf AP, Angrist B, Brodie JD, Rotrosen J. Negative symptoms and hypofrontality in chronic schizophrenia. Arch Gen Psychiatry. 1992;49(12):959–65.

    CAS  PubMed  Google Scholar 

  89. Drevets WC, Videen TO, Price JL, Preskorn SH, Carmichael ST, Raichle ME. A functional anatomical study of unipolar depression. J Neurosci. 1992;12(9):3628–41.

    CAS  PubMed  Google Scholar 

  90. Addario D. Developmental considerations in the concept of affective illness. J Clin Psychiatry. 1985;46(10 Pt 2):46–56.

    CAS  PubMed  Google Scholar 

  91. Park CH, Spitzer AR, Desai HJ, Zhang JJ, Graziani LJ. Brain SPECT in neonates following extracorporeal membrane oxygenation: evaluation of technique and preliminary results. J Nucl Med. 1992;33(11):1943–8.

    CAS  PubMed  Google Scholar 

  92. Kumar P, Bedard MP, Shankaran S, Delaney-Black V. Post extracorporeal membrane oxygenation single photon emission computed tomography (SPECT) as a predictor of neurodevelopmental outcome. Pediatrics. 1994;93(6 Pt 1):951–5.

    CAS  PubMed  Google Scholar 

  93. Wong PC, Barlow CF, Hickey PR, et al. Factors associated with choreoathetosis after cardiopulmonary bypass in children with congenital heart disease. Circulation. 1992;86(5 Suppl):II118–26.

    CAS  PubMed  Google Scholar 

  94. du Plessis AJ, Treves ST, Hickey PR, et al. Regional cerebral perfusion abnormalities after cardiac operations: single photon emission computed tomography (SPECT) findings in children with postoperative movement disorders. J Thorac Cardiovasc Surg. 1994;107:1036–43.

    PubMed  Google Scholar 

  95. Bleyer WA. Epidemiologic impact of children with brain tumors. Childs Nerv Syst. 1999;15(11–12):758–63.

    CAS  PubMed  Google Scholar 

  96. Statistical Report: Central Brain Tumor Registry of the United States (CBTRUS). 2012.

    Google Scholar 

  97. http://www.abta.org.

  98. CBTRUS. Primary brain tumors in the United States Statistical Report 2000-2004. Hinsdale: Central Brain Tumor Registry of the United States; 2007–2008.

    Google Scholar 

  99. http://www.cancer.gov/cancertopics/types/brain/.

  100. Kingsley DP, Kendall BE. CT of the adverse effects of therapeutic radiation of the central nervous system. AJNR Am J Neuroradiol. 1981;2(5):453–60.

    CAS  PubMed  Google Scholar 

  101. van Dellen JR, Danziger A. Failure of computerized tomography to differentiate between radiation necrosis and cerebral tumour. S Afr Med J. 1978;53(5):171–2.

    PubMed  Google Scholar 

  102. Julow J, Major T, Emri M, et al. The application of image fusion in stereotactic brachytherapy of brain tumours. Acta Neurochir (Wien). 2000;142(11):1253–8.

    CAS  Google Scholar 

  103. Kaplan WD, Takvorian T, Morris JH, Rumbaugh CL, Connolly BT, Atkins HL. Thallium-201 brain tumor imaging: a comparative study with pathologic correlation. J Nucl Med. 1987;28(1):47–52.

    CAS  PubMed  Google Scholar 

  104. O'Tuama LA, Phillips PC, Strauss LC, et al. Two-phase [11C]L-methionine PET in childhood brain tumors. Pediatr Neurol. 1990;6(3):163–70.

    PubMed  Google Scholar 

  105. O'Tuama LA, Treves ST, Larar JN, et al. Thallium-201 versus technetium-99m-MIBI SPECT in evaluation of childhood brain tumors: a within-subject comparison. J Nucl Med. 1993;34(7):1045–51.

    PubMed  Google Scholar 

  106. Biersack HJ, Coenen HH, Stocklin G, et al. Imaging of brain tumors with L-3-[123I]iodo-alpha-methyl tyrosine and SPECT. J Nucl Med. 1989;30(1):110–2.

    CAS  PubMed  Google Scholar 

  107. Kaplan WD, McComb JG, Strand RD, Treves S. Suppression of 99mTc-pertechnetate uptake in a choroid plexus papilloma. Radiology. 1973;109(2):395–6.

    CAS  PubMed  Google Scholar 

  108. Kim KT, Black KL, Marciano D, et al. Thallium-201 SPECT imaging of brain tumors: methods and results. J Nucl Med. 1990;31(6):965–9.

    CAS  PubMed  Google Scholar 

  109. Coleman RE, Hoffman JM, Hanson MW, Sostman HD, Schold SC. Clinical application of PET for the evaluation of brain tumors. J Nucl Med. 1991;32(4):616–22.

    CAS  PubMed  Google Scholar 

  110. Maria BL, Drane WE, Mastin ST, Jimenez LA. Comparative value of thallium and glucose SPECT imaging in childhood brain tumors. Pediatr Neurol. 1998;19(5):351–7.

    CAS  PubMed  Google Scholar 

  111. Di Chiro G, DeLaPaz RL, Brooks RA, et al. Glucose utilization of cerebral gliomas measured by [18F] fluorodeoxyglucose and positron emission tomography. Neurology. 1982;32(12):1323–9.

    PubMed  Google Scholar 

  112. Delbeke D, Meyerowitz C, Lapidus RL, et al. Optimal cutoff levels of F-18 fluorodeoxyglucose uptake in the differentiation of low-grade from high-grade brain tumors with PET. Radiology. 1995;195(1):47–52.

    CAS  PubMed  Google Scholar 

  113. Spence AM, Muzi M, Mankoff DA, et al. 18F-FDG PET of gliomas at delayed intervals: improved distinction between tumor and normal gray matter. J Nucl Med. 2004;45(10):1653–9.

    PubMed  Google Scholar 

  114. Horky LL, Hsiao EM, Weiss SE, Drappatz J, Gerbaudo VH. Dual phase FDG-PET imaging of brain metastases provides superior assessment of recurrence versus post-treatment necrosis. J Neurooncol. 2011;103(1):137–46.

    PubMed  Google Scholar 

  115. Horky LL, Treves ST. PET and SPECT in brain tumors and epilepsy. Neurosurg Clin N Am. 2011;22(2):169–84, viii.

    PubMed  Google Scholar 

  116. Chen W, Delaloye S, Silverman DH, et al. Predicting treatment response of malignant gliomas to bevacizumab and irinotecan by imaging proliferation with [18F] fluorothymidine positron emission tomography: a pilot study. J Clin Oncol. 2007;25(30):4714–21.

    CAS  PubMed  Google Scholar 

  117. van Waarde A, Cobben DC, Suurmeijer AJ, et al. Selectivity of 18F-FLT and 18F-FDG for differentiating tumor from inflammation in a rodent model. J Nucl Med. 2004;45(4):695–700.

    PubMed  Google Scholar 

  118. Rachinger W, Goetz C, Popperl G, et al. Positron emission tomography with O-(2-[18F]fluoroethyl)-l-tyrosine versus magnetic resonance imaging in the diagnosis of recurrent gliomas. Neurosurgery. 2005;57(3):505–11; discussion 505–11.

    PubMed  Google Scholar 

  119. Chen W, Silverman DH, Delaloye S, et al. 18F-FDOPA PET imaging of brain tumors: comparison study with 18F-FDG PET and evaluation of diagnostic accuracy. J Nucl Med. 2006;47(6):904–11.

    CAS  PubMed  Google Scholar 

  120. Pirotte B, Goldman S, Massager N, et al. Comparison of 18F-FDG and 11C-methionine for PET-guided stereotactic brain biopsy of gliomas. J Nucl Med. 2004;45(8):1293–8.

    CAS  PubMed  Google Scholar 

  121. Levivier M, Massager N, Wikler D, et al. Use of stereotactic PET images in dosimetry planning of radiosurgery for brain tumors: clinical experience and proposed classification. J Nucl Med. 2004;45(7):1146–54.

    PubMed  Google Scholar 

  122. Gupta T, Beriwal S. PET/CT-guided radiation therapy planning: from present to the future. Indian J Cancer. 2010;47(2):126–33.

    CAS  PubMed  Google Scholar 

  123. International Atomic Energy Agency. The role of PET/CT in radiation treatment planning for cancer patient treatment. Vienna: IAEA-TECDOC-1603; 2008.

    Google Scholar 

  124. http://www.ebroc.com/html/zoom/p_imagefusion.htm.

  125. Galaske RG, Schober O, Heyer R. Determination of brain death in children with 123I-IMP and Tc-99m HMPAO. Psychiatry Res. 1989;29(3):343–5.

    CAS  PubMed  Google Scholar 

  126. Donohoe KJ, Frey KA, Gerbaudo VH, Mariani G, Nagel JS, Shulkin B. Procedure guideline for brain death scintigraphy. J Nucl Med. 2003;44(5):846–51.

    PubMed  Google Scholar 

  127. Spieth M, Abella E, Sutter C, Vasinrapee P, Wall L, Ortiz M. Importance of the lateral view in the evaluation of suspected brain death. Clin Nucl Med. 1995;20(11):965–8.

    CAS  PubMed  Google Scholar 

  128. Spieth ME, Ansari AN, Kawada TK, Kimura RL, Siegel ME. Direct comparison of Tc-99m DTPA and Tc-99m HMPAO for evaluating brain death. Clin Nucl Med. 1994;19(10):867–72.

    CAS  PubMed  Google Scholar 

  129. Jacobs AH, Dittmar C, Winkeler A, Garlip G, Heiss WD. Molecular imaging of gliomas. Mol Imaging. 2002;1(4):309–35.

    CAS  PubMed  Google Scholar 

  130. Camargo EE. Brain SPECT in neurology and psychiatry. J Nucl Med. 2001;42(4):611–23.

    CAS  PubMed  Google Scholar 

  131. Del Sole A, Falini A, Ravasi L, et al. Anatomical and biochemical investigation of primary brain tumours. Eur J Nucl Med. 2001;28(12):1851–72.

    PubMed  Google Scholar 

  132. Leveille J, Demonceau G, De Roo M, et al. Characterization of technetium-99m-L, L-ECD for brain perfusion imaging, part 2: biodistribution and brain imaging in humans. J Nucl Med. 1989;30(11):1902–10.

    CAS  PubMed  Google Scholar 

  133. Hertz-Pannier L, Chiron C, Vera P, et al. Functional imaging in the work-up of childhood epilepsy. Childs Nerv Syst. 2001;17(4–5):223–8.

    CAS  PubMed  Google Scholar 

  134. Van Paesschen W. Ictal SPECT. Epilepsia. 2004;45 Suppl 4:35–40.

    PubMed  Google Scholar 

  135. Sharp PF, Smith FW, Gemmell HG, et al. Technetium-99m HM-PAO stereoisomers as potential agents for imaging regional cerebral blood flow: human volunteer studies. J Nucl Med. 1986;27:171–7.

    CAS  PubMed  Google Scholar 

  136. Tubergen K, Corlija M, Volkert WA, Holmes RA. Sensitivity of technetium-99m-d,1-HMPAO to radiolysis in aqueous solutions. J Nucl Med. 1991;32(1):111–5.

    CAS  PubMed  Google Scholar 

  137. Weisner PS, Bower GR, Dollimore LA, Forster AM, Higley B, Storey AE. A method for stabilising technetium-99m exametazime prepared from a commercial kit. Eur J Nucl Med. 1993;20(8):661–6.

    CAS  PubMed  Google Scholar 

  138. Greenberg JH, Kushner M, Rango M, Alavi A, Reivich M. Validation studies of iodine-123-iodoamphetamine as a cerebral blood flow tracer using emission tomography. J Nucl Med. 1990;31(8):1364–9.

    CAS  PubMed  Google Scholar 

  139. Devous Sr MD, Payne JK, Lowe JL, Leroy RF. Comparison of technetium-99m-ECD to Xenon-133 SPECT in normal controls and in patients with mild to moderate regional cerebral blood flow abnormalities. J Nucl Med. 1993;34(5):754–61.

    PubMed  Google Scholar 

  140. Saha GB, MacIntyre WJ, Go RT. Radiopharmaceuticals for brain imaging. Semin Nucl Med. 1994;24(4):324–49.

    CAS  PubMed  Google Scholar 

  141. Payne JK, Trivedi MH, Devous Sr MD. Comparison of technetium-99m-HMPAO and xenon-133 measurements of regional cerebral blood flow by SPECT. J Nucl Med. 1996;37(10):1735–40.

    CAS  PubMed  Google Scholar 

  142. Leskinen-Kallio S. Positron emission tomography in oncology. Clin Physiol. 1994;14(3):329–35.

    CAS  PubMed  Google Scholar 

  143. Black KL, Hawkins RA, Kim KT, Becker DP, Lerner C, Marciano D. Use of thallium-201 SPECT to quantitate malignancy grade of glioma. J Neurosurg. 1989;71:342.

    CAS  PubMed  Google Scholar 

  144. Sasaki M, Kuwabara Y, Yoshida T, et al. A comparative study of thallium-201 SPET, carbon-11 methionine PET and fluorine-18 fluorodeoxyglucose PET for the differentiation of astrocytic tumours. Eur J Nucl Med. 1998;25(9):1261–9.

    CAS  PubMed  Google Scholar 

  145. Krishna L, Slizofski WJ, Katsetos CD, et al. Abnormal intracerebral thallium localization in a bacterial brain abscess. J Nucl Med. 1992;33(11):2017–9.

    CAS  PubMed  Google Scholar 

  146. O'Tuama LA, Packard AB, Treves ST. SPECT imaging of pediatric brain tumor with hexakis (methoxyisobutylisonitrile) technetium (I). J Nucl Med. 1990;31(12):2040–1.

    PubMed  Google Scholar 

  147. Soricelli A, Cuocolo A, Varrone A, et al. Technetium-99m-tetrofosmin uptake in brain tumors by SPECT: comparison with thallium-201 imaging. J Nucl Med. 1998;39(5):802–6.

    CAS  PubMed  Google Scholar 

  148. Choi JY, Kim SE, Shin HJ, Kim BT, Kim JH. Brain tumor imaging with 99mTc-tetrofosmin: comparison with 201Tl, 99mTc-MIBI, and 18F-fluorodeoxyglucose. J Neurooncol. 2000;46(1):63–70.

    CAS  PubMed  Google Scholar 

  149. Kung HF, Kung MP, Choi SR. Radiopharmaceuticals for single-photon emission computed tomography brain imaging. Semin Nucl Med. 2003;33(1):2–13.

    PubMed  Google Scholar 

  150. Meegalla SK, Plossl K, Kung MP, et al. Synthesis and characterization of technetium-99m-labeled tropanes as dopamine transporter-imaging agents. J Med Chem. 1997;40(1):9–17.

    CAS  PubMed  Google Scholar 

  151. Dresel S, Krause J, Krause KH, et al. Attention deficit hyperactivity disorder: binding of [99mTc]TRODAT-1 to the dopamine transporter before and after methylphenidate treatment. Eur J Nucl Med. 2000;27(10):1518–24.

    CAS  PubMed  Google Scholar 

  152. Woods SW, Hegeman IM, Zubal IG, et al. Visual stimulation increases technetium-99m-HMPAO distribution in human visual cortex. J Nucl Med. 1991;32(2):210–5.

    CAS  PubMed  Google Scholar 

  153. Stehling MK, Firth JL, Worthington BS, et al. Observation of cerebrospinal fluid flow with echo-planar magnetic resonance imaging. Br J Radiol. 1991;64(758):89–97.

    CAS  PubMed  Google Scholar 

  154. Lorenzo AV, Page LK, Watters GV. Relationship between cerebrospinal fluid formation, absorption and pressure in human hydrocephalus. Brain. 1970;93(4):679–92.

    CAS  PubMed  Google Scholar 

  155. Davson H, Welch K, Segal MB, Davson H. Physiology and pathophysiology of the cerebrospinal fluid. Edinburgh/New York: Churchill Livingstone; 1987.

    Google Scholar 

  156. Jackson RT, Tigges J, Arnold W. Subarachnoid space of the CNS, nasal mucosa, and lymphatic system. Arch Otolaryngol. 1979;105(4):180–4.

    CAS  PubMed  Google Scholar 

  157. McComb JG, Hyman S, Weiss MH. Lymphatic drainage of cerebrospinal fluid in the cat. In: Shapiro K, Marmarou A, Portnoy H, editors. Hydrocephalus. New York: Raven Press; 1984, xiii, 401 p.

    Google Scholar 

  158. Winston K, Hall J, Johnson D, Micheli L. Acute elevation of intracranial pressure following transection of non-functional spinal cord. Clin Orthop Relat Res. 1977;128:41–4.

    PubMed  Google Scholar 

  159. Rubin RC, Henderson ES, Ommaya AK, Walker MD, Rall DP. The production of cerebrospinal fluid in man and its modification by acetazolamide. J Neurosurg. 1966;25(4):430–6.

    CAS  PubMed  Google Scholar 

  160. Cutler RW, Page L, Galicich J, Watters GV. Formation and absorption of cerebrospinal fluid in man. Brain. 1968;91(4):707–20.

    CAS  PubMed  Google Scholar 

  161. Page LK, Bresnan MJ, Lorenzo AV. Cerebrospinal fluid perfusion studies in childhood hydrocephalus. Surg Neurol. 1973;1(6):317–20.

    CAS  PubMed  Google Scholar 

  162. Welch K. Secretion of cerebrospinal fluid by choroid plexus of the rabbit. Am J Physiol. 1963;205:617–24.

    CAS  PubMed  Google Scholar 

  163. de Rougemont J, Ames AI, Nesbett FB, Hofmann HF. Fluid formed by choroid plexus; a technique for its collection and a comparison of its electrolyte composition with serum and cisternal fluids. J Neurophysiol. 1960;23:485–95.

    PubMed  Google Scholar 

  164. Bonting SL, Simon KA, Hawkins NM. Studies on sodium-potassium-activated adenosine triphosphatase. I. Quantitative distribution in several tissues of the cat. Arch Biochem Biophys. 1961;95:416–23.

    CAS  PubMed  Google Scholar 

  165. Vates Jr TS, Bonting SL, Oppelt WW. Na-K activated adenosine triphosphatase formation of cerebrospinal fluid in the cat. Am J Physiol. 1964;206:1165–72.

    CAS  PubMed  Google Scholar 

  166. Johanson CE. The choroid plexus-arachnoid membrane-cerebrospinal fluid system. In: Boulton AA, Baker GB, Walz W, editors. Neuromethods: the neuronal microenvironment. Clifton: Humana Press; 1988, xxvi, 732 p.

    Google Scholar 

  167. Cserr HF. Physiology of the choroid plexus. Physiol Rev. 1971;51(2):273–311.

    CAS  PubMed  Google Scholar 

  168. Netsky MG, Samruay S. The choroid plexus in health and disease. Charlottesville: University Press of Virginia; 1975.

    Google Scholar 

  169. Milhorat TH. Structure and function of the choroid plexus and other sites of cerebrospinal fluid formation. Int Rev Cytol. 1976;47:225–88.

    CAS  PubMed  Google Scholar 

  170. Wright EM. Transport processes in the formation of the cerebrospinal fluid. Rev Physiol Biochem Pharmacol. 1978;83:3–34.

    CAS  PubMed  Google Scholar 

  171. Spector R, Johanson CE. The mammalian choroid plexus. Sci Am. 1989;261(5):68–74.

    CAS  PubMed  Google Scholar 

  172. Price DL, James Jr AE, Sperber E, Strecker EP. Communicating hydrocephalus. Cisternographic and neuropathologic studies. Arch Neurol. 1976;33(1):15–20.

    CAS  PubMed  Google Scholar 

  173. Eisenberg HM, McComb JG, Lorenzo AV. Cerebrospinal fluid overproduction and hydrocephalus associated with choroid plexus papilloma. J Neurosurg. 1974;40(3):381–5.

    CAS  PubMed  Google Scholar 

  174. Treves ST, Welch K, Kuruc A. Cerebrospinal fluid. In: Treves ST, editor. Pediatric nuclear medicine. New York: Springer; 1985. p. 223–31.

    Google Scholar 

  175. Dichiro G. Movement of the cerebrospinal fluid in human beings. Nature. 1964;204:290–1.

    CAS  PubMed  Google Scholar 

  176. Bannister R, Gilford E, Kocen R. Isotope encephalography in the diagnosis of dementia due to communicating hydrocephalus. Lancet. 1967;2(7524):1014–7.

    CAS  PubMed  Google Scholar 

  177. Benson DF, LeMay M, Patten DH, Rubens AB. Diagnosis of normal-pressure hydrocephalus. N Engl J Med. 1970;283(12):609–15.

    CAS  PubMed  Google Scholar 

  178. Glasauer FE, Alker GJ, Leslie EV, Nicol CF. Isotope cisternography in hydrocephalus with normal pressure: case report and technical note. J Neurosurg. 1968;29:555–61.

    Google Scholar 

  179. Greitz T, Grepe A. Encephalography in the diagnosis of convexity block hydrocephalus. Acta Radiol Diagn. 1971;11(3):232–42.

    CAS  Google Scholar 

  180. Rau H, Fas A, Horst W, Baumgartner G. Clinical observations on communicating hydrocephalus of unknown etiology (author's transl). J Neurol. 1974;207(4):279–87.

    CAS  PubMed  Google Scholar 

  181. Shenkin HA, Crowley JN. Hydrocephalus complicating pituitary adenoma. J Neurol Neurosurg Psychiatry. 1973;36(6):1063–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  182. Tator CH, Murray S. A clinical, pneumoencephalographic and radioisotopic study of normal-pressure communicating hydrocephalus. Can Med Assoc J. 1971;105(6):573–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  183. O’Brien MD, Haggith JW, Appleton D. Cerebro-spinal fluid dynamics in dementia. Exp Brain Res. 1982;(Suppl 5):196–200. PMID: 7151909.

    Google Scholar 

  184. Donn SM, Roloff DW, Keyes Jr JW. Lumbar cisternography in evaluation of hydrocephalus in the preterm infant. Pediatrics. 1983;72(5):670–6.

    CAS  PubMed  Google Scholar 

  185. Khan EA, Luros JT. Hydrocephalus from overproduction of cerebrospinal fluid. J Neurosurg. 1952;9:59–67.

    Google Scholar 

  186. Matson DD. Hydrocephalus in a premature infant caused by papilloma of the choroid plexus; with report of surgical treatment. J Neurosurg. 1953;10(4):416–20.

    CAS  PubMed  Google Scholar 

  187. Matson DD, Crofton FD. Papilloma of the choroid plexus in childhood. J Neurosurg. 1960;17:1002–27.

    CAS  PubMed  Google Scholar 

  188. Ray BS, Peck Jr FC. Papilloma of the choroid plexus of the lateral ventricles causing hydrocephalus in an infant. J Neurosurg. 1956;13(4):317–22.

    CAS  PubMed  Google Scholar 

  189. Johnson RT. Clinicopathological aspects of the cerebrospinal fluid circulation. Paper presented at: Ciba Foundation symposium on the cerebrospinal fluid: production, circulation and absorption, Boston, 1958.

    Google Scholar 

  190. Caldicott WJ, North JB, Simpson DA. Traumatic cerebrospinal fluid fistulas in children. J Neurosurg. 1973;38(1):1–9.

    CAS  PubMed  Google Scholar 

  191. Cowan RJ, Maynard CD. Trauma to the brain and extracranial structures. Semin Nucl Med. 1974;4(4):319–38.

    CAS  PubMed  Google Scholar 

  192. Harwood-Nash DC. Fractures of the petrous and tympanic parts of the temporal bone in children: a tomographic study of 35 cases. Am J Roentgenol Radium Ther Nucl Med. 1970;110(3):598–607.

    CAS  PubMed  Google Scholar 

  193. Lantz EJ, Forbes GS, Brown ML, Laws Jr ER. Radiology of cerebrospinal fluid rhinorrhea. AJR Am J Roentgenol. 1980;135(5):1023–30.

    CAS  PubMed  Google Scholar 

  194. Wocjan J, Klisiewicz R, Krolicki L. Overpressure radionuclide cisternography and metrizamide computed tomographic cisternography in the detection of intermittent rhinoliquorrheas in children. Childs Nerv Syst. 1989;5(4):238–40.

    CAS  PubMed  Google Scholar 

  195. Jaffe B, Welch K, Strand R, Treves S. Cerebrospinal fluid rhinorrhea via the fossa of Rosenmuller. Laryngoscope. 1976;86(7):903–7.

    CAS  PubMed  Google Scholar 

  196. McLennan JE, Mickle JP, Treves S. Radionuclide cisternographic evaluation and follow-up of posttraumatic subconjunctival CSF loculation. Case report. J Neurosurg. 1976;44(4):496–9.

    CAS  PubMed  Google Scholar 

  197. Ferreira S, Jhingran SG, Johnson PC. Radionuclide cisternography for the study of arachnoid cysts: a case report. Neuroradiology. 1980;19(3):167–9.

    CAS  PubMed  Google Scholar 

  198. Front D, Minderhoud JM, Beks JW, Penning L. Leptomeningeal cysts diagnosed by isotope cisternography. J Neurol Neurosurg Psychiatry. 1973;36(6):1018–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  199. Harbert J, Haddad D, McCullough D. Quantitation of cerebrospinal fluid shunt flow. Radiology. 1974;112(2):379–87.

    CAS  PubMed  Google Scholar 

  200. Kuruc A, Treves S, Welch K, Merlino D. Radionuclide estimation of cerebrospinal fluid shunt flow. Evidence supporting an alternative theoretical model. J Neurosurg. 1984;60(2):361–4.

    CAS  PubMed  Google Scholar 

  201. Rudd TG, Shurtleff DB, Loeser JD, Nelp WB. Radionuclide assessment of cerebrospinal fluid shunt function in children. J Nucl Med. 1973;14(9):683–6.

    CAS  PubMed  Google Scholar 

  202. Gelfand MJ, Walus M, Tomsick T, Benton C, McLaurin R. Nasoethmoidal encephalomeningocele demonstrated by cisternography: case report. J Nucl Med. 1977;18(7):706–8.

    CAS  PubMed  Google Scholar 

  203. Lusins J, Nakagawa H, Sorek M, Goldsmith S. Cisternography and CT scanning with 111In-DTPA in evaluation of posterior fossa arachnoid cysts. Clin Nucl Med. 1979;4(4):161–3.

    CAS  PubMed  Google Scholar 

  204. Marinov M, Undjian S, Wetzka P. An evaluation of the surgical treatment of intracranial arachnoid cysts in children. Childs Nerv Syst. 1989;5(3):177–83.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ted Treves MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Treves, S.T., Chugani, H.T., Bourgeois, B.F.D., Kuruc, A. (2014). Central Nervous System: The Brain and Cerebrospinal Fluid. In: Treves, S. (eds) Pediatric Nuclear Medicine and Molecular Imaging. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9551-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9551-2_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-9550-5

  • Online ISBN: 978-1-4614-9551-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics