Skip to main content

Scanning Electron Microscopy Analysis of Floral Development

  • Protocol
  • First Online:
Book cover Flower Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1110))

Abstract

Scanning Electron Microscopy (SEM) allows the morphological characterization of the surface features of floral and inflorescence structures in a manner that retains the topography or three-dimensional appearance of the structure. Even at relatively low magnification levels it is possible to characterize early developmental stages. Using medium to high power magnification at later stages of development, cell surface morphology can be visualized allowing the identification of specific epidermal cell types. The analysis of the altered developmental progressions of mutant plants can provide insight into the developmental processes that are disrupted in that mutant background.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bowman JL (1994) Arabidopsis: an atlas of morphology and development. Springer, New York, NY

    Book  Google Scholar 

  2. Bowman JL, Smyth DR, Meyerowitz EM (1989) Genes directing flower development in Arabidopsis. Plant Cell 1(1):37–52

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Cheng PC, Greyson RI, Walden DB (1983) Organ initiation and the development of unisexual flowers in the tassel and Ear of Zea mays. Am J Bot 70(3):450–462

    Article  Google Scholar 

  4. Sommer H, Beltran JP, Huijser P, Pape H, Lonnig WE, Saedler H, Schwarzsommer Z (1990) Deficiens, a homeotic gene involved in the control of flower morphogenesis in antirrhinum-majus: the protein shows homology to transcription factors. Embo Journal 9(3):605–613

    CAS  PubMed  Google Scholar 

  5. Smyth DR, Bowman JL, Meyerowitz EM (1990) Early flower development in Arabidopsis. Plant Cell 2(8):755–767

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Bateson W (1894) Materials for the study of variation. Macmillian, London

    Google Scholar 

  7. Leavitt RG (1909) A vegetative mutant, and the principle of homoeosis in plants. Bot Gaz 47:30–68

    Article  Google Scholar 

  8. Sattler R (1988) Homeosis in plants. Am J Bot 75(10):1606–1617

    Article  Google Scholar 

  9. Siegfried KR, Eshed Y, Baum SF, Otsuga D, Drews GN, Bowman JL (1999) Members of the YABBY gene family specify abaxial cell fate in Arabidopsis. Development 126(18):4117–4128

    CAS  PubMed  Google Scholar 

  10. Sawa S, Watanabe K, Goto K, Kanaya E, Morita EH, Okada K (1999) FILAMENTOUS FLOWER, a meristem and organ identity gene of Arabidopsis, encodes a protein with a zinc finger and HMG-related domains. Genes Dev 13(9):1079–1088

    Article  CAS  PubMed  Google Scholar 

  11. McConnell JR, Barton MK (1998) Leaf polarity and meristem formation in Arabidopsis. Development 125(15):2935–2942

    CAS  PubMed  Google Scholar 

  12. Kerstetter RA, Bollman K, Taylor RA, Bomblies K, Poethig RS (2001) KANADI regulates organ polarity in Arabidopsis. Nature 411(6838):706–709

    Article  CAS  PubMed  Google Scholar 

  13. Eshed Y, Baum SF, Perea JV, Bowman JL (2001) Establishment of polarity in lateral organs of plants. Curr Biol 11(16):1251–1260

    Article  CAS  PubMed  Google Scholar 

  14. Waites R, Hudson A (1995) phantastica: a gene required for dorsoventrality of leaves in Antirrhinum majus. Development 121(7):2143–2154

    CAS  Google Scholar 

  15. Sessions RA, Zambryski PC (1995) Arabidopsis gynoecium structure in the wild and in ettin mutants. Development 121(5):1519–1532

    CAS  PubMed  Google Scholar 

  16. Sessions A, Nemhauser JL, McColl A, Roe JL, Feldmann KA, Zambryski PC (1997) ETTIN patterns the Arabidopsis floral meristem and reproductive organs. Development 124(22):4481–4491

    CAS  PubMed  Google Scholar 

  17. Berleth T, Jurgens G (1993) The role of the monopteros gene in organising the basal body region of the Arabidopsis embryo. Development 118(2):575–587

    Google Scholar 

  18. Franks RG, Liu Z, Fischer RL (2006) SEUSS and LEUNIG regulate cell proliferation, vascular development and organ polarity in Arabidopsis petals. Planta 224(4):801–811

    Article  CAS  PubMed  Google Scholar 

  19. Franks RG, Wang C, Levin JZ, Liu Z (2002) SEUSS, a member of a novel family of plant regulatory proteins, represses floral homeotic gene expression with LEUNIG. Development 129(1):253–263

    CAS  PubMed  Google Scholar 

  20. Azhakanandam S, Nole-Wilson S, Bao F, Franks RG (2008) SEUSS and AINTEGUMENTA mediate patterning and ovule initiation during gynoecium medial domain development. Plant Physiol 146(3):1165–1181

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Bao F, Azhakanandam S, Franks RG (2010) SEUSS and SEUSS-LIKE transcriptional adaptors regulate floral and embryonic development in Arabidopsis. Plant Physiol 152(2):821–836

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Feng C-M, Xiang Q-YJ, Franks RG (2011) Phylogeny-based developmental analyses illuminate evolution of inflorescence architectures in dogwoods (Cornus s. l., Cornaceae). New Phytol 191(3):850–869

    Article  PubMed  Google Scholar 

  23. Dean DA, Gasiorowski JZ (2011) Preparing injection pipettes on a flaming/brown pipette puller. Cold Spring Harb Protoc 2011(3):prot5586. doi:10.1101/pdb.prot5586

    PubMed  Google Scholar 

  24. Bomblies K, Shukla V, Graham C (2008) Scanning electron microscopy (SEM) of plant tissues. Cold Spring Harb Protoc 2008(4):prot4933. doi:10.1101/pdb.prot4933

    Google Scholar 

  25. Cooper K (1980) Neutralization of osmium tetroxide in case of accidental spillage and for disposal. Bulletin Micros Society Canada 8(3):24–28

    Google Scholar 

  26. Marlow P, Presland AEB, Wield DV (1970) Some replica techniques for the scanning electron microscope. Micron 2(2):139–147

    Google Scholar 

  27. Sampson J (1961) Method of replicating Dry or moist surfaces for examination by light microscopy. Nature 191(479):932–933

    Article  CAS  PubMed  Google Scholar 

  28. Williams MH, Vesk M, Mullins MG (1987) Tissue preparation for scanning electron microscopy of fruit surfaces: comparison of fresh and cryopreserved specimens and replicas of banana peel. Microsc Acta 18(1):27–31

    Article  CAS  Google Scholar 

  29. Williams MH, Green PB (1988) Sequential scanning electron microscopy of a growing plant meristem. Protoplasma 147(1):77–79

    Article  Google Scholar 

  30. Hayat MA (1974) Principles and techniques of scanning electron microscopy. Biological applications, vol 1. Van Nostrand Reinhold Company, New York

    Google Scholar 

  31. Pathan AK, Bond J, Gaskin RE (2008) Sample preparation for scanning electron microscopy of plant surfaces: horses for courses. Micron 39(8):1049–1061

    Article  CAS  PubMed  Google Scholar 

  32. Bozzola JJ, Russell LD (1999) Electron microscopy: principles and techniques for biologists, 2nd edn. Jones and Bartlett, Sudbury, MA

    Google Scholar 

Download references

Acknowledgment

I thank John Mackenzie Jr. and Valerie K. Lapham from the Center for Electron Microscopy at NCSU for assistance and advice on our SEM analyses. I also thank April Wynn, Mia Chunmiao Feng, John Mackenzie Jr., and Valerie K. Lapham for comments and suggestions on the manuscript. I thank Mia Chunmiao Feng for providing the SEM images used in Fig.1

Fig. 1
figure 1

Examples of scanning electron microscopy micrographs. (a) Excessive buildup of electrostatic charge results in “overexposed” sections of the image (arrows). This is often caused by poor electrical grounding of the tissue. (b) Collapsed cells are evident (arrows). This is often caused by incomplete penetration of the fixative. The arrowhead indicates a section of the tissue that was inadvertently damaged during the dissection required to remove the external structures of this sample. (c) A relatively low-magnification image (taken at 130×) of a Cornus sanguinea inflorescence. (d) Higher magnification image of C. sanguinea petal surface (taken at 1,000×) showing a more-detailed epidermal cell surface morphology

I apologize to those whose work is not cited due to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert G. Franks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Franks, R.G. (2014). Scanning Electron Microscopy Analysis of Floral Development. In: Riechmann, J., Wellmer, F. (eds) Flower Development. Methods in Molecular Biology, vol 1110. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-9408-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9408-9_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4614-9407-2

  • Online ISBN: 978-1-4614-9408-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics