Skip to main content

Multi-Atlas-Based Segmentation of Pelvic Structures from CT Scans for Planning in Prostate Cancer Radiotherapy

  • Chapter
  • First Online:
Abdomen and Thoracic Imaging

Abstract

In prostate cancer radiotherapy, the accurate identification of the prostate and organs at risk in planning computer tomography (CT) images is an important part of the therapy planning and optimization. Manually contouring these organs can be a time-consuming process and subject to intra- and inter-expert variability. Automatic identification of organ boundaries from these images is challenging due to the poor soft tissue contrast. Atlas-based approaches may provide a priori structural information by propagating manual expert delineations to a new individual space; however, the interindividual variability and registration errors may lead to biased results. Multi-atlas approaches can partly overcome some of these difficulties by selecting the most similar atlases among a large data base, but the definition of similarity measure between the available atlases and the query individual has still to be addressed. The purpose of this chapter is to explain atlas-based segmentation approaches and the evaluation of different atlas-based strategies to simultaneously segment prostate, bladder, and rectum from CT images. A comparison between single and multiple atlases is performed. Experiments on atlas ranking, selection strategies, and fusion-decision rules are carried out to illustrate the presented methodology. Propagation of labels using two registration strategies is applied and the results of the comparison with manual delineations are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. GLOBOCAN (2012) Prostate Cancer Incidence and Mortality Worldwide in 2008

    Google Scholar 

  2. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61:69–90

    Article  PubMed  Google Scholar 

  3. INCa (2011) La situation du cancer en France en 2011-Rapport Institut National Du Cancer. INCa, rapport 14 Novembre 2011

    Google Scholar 

  4. AIHW (2007) Cancer in Australia: an overview. Australian Institute of Health and Welfare (AIHW) & Australasian Association of Cancer Registries (AACR) Cancer series no. 37

    Google Scholar 

  5. Grimsley SJS, Khan MH, Lennox E, Paterson PH (2007) Experience with the spanner prostatic stent in patients unfit for surgery: an observational study. J Endourol 21:1093–1096

    Article  PubMed  Google Scholar 

  6. Mangar SA, Huddart RA, Parker CC, Dearnaley DP, Khoo VS, Horwich A (2005) Technological advances in radiotherapy for the treatment of localised prostate cancer. Eur J Cancer 41:908–921

    Article  PubMed  Google Scholar 

  7. Guckenberger M, Flentje M (2007) Intensity-modulated radiotherapy (IMRT) of localized prostate cancer: a review and future perspectives. Strahlenther Onkol 183:57–62

    Article  PubMed  Google Scholar 

  8. Cheung P, Sixel K, Morton G, Loblaw DA, Tirona R, Pang G, Choo R, Szumacher E, Deboer G, Pignol JP (2005) Individualized planning target volumes for intrafraction motion during hypofractionated intensity-modulated radiotherapy boost for prostate cancer. Int J Radiat Oncol Biol Phys 62:418–425

    Article  PubMed  Google Scholar 

  9. Beckendorf V, Guerif S, Le Prise E, Cosset JM, Bougnoux A, Chauvet B, Salem N, Chapet O, Bourdain S, Bachaud JM, Maingon P, Hannoun-Levi JM, Malissard L, Simon JM, Pommier P, Hay M, Dubray B, Lagrange JL, Luporsi E, Bey P (2011) 70 Gy versus 80 Gy in localized prostate cancer: 5-year results of GETUG 06 randomized trial. Int J Radiat Oncol Biol Phys 80:1056–1063

    Article  PubMed  Google Scholar 

  10. Zietman AL, DeSilvio ML, Slater JD, Rossi CJ Jr, Miller DW, Adams JA, Shipley WU (2005) Comparison of conventional-dose vs high-dose conformal radiation therapy in clinically localized adenocarcinoma of the prostate: a randomized controlled trial. JAMA 294:1233–1239

    Article  PubMed  CAS  Google Scholar 

  11. Fonteyne V, Villeirs G, Speleers B, De Neve W, De Wagter C, Lumen N, De Meerleer G (2008) Intensity-modulated radiotherapy as primary therapy for prostate cancer: report on acute toxicity after dose escalation with simultaneous integrated boost to intraprostatic lesion. Int J Radiat Oncol Biol Phys 72:799–807

    Article  PubMed  Google Scholar 

  12. Fiorino C, Rancati T, Valdagni R (2009) Predictive models of toxicity in external radiotherapy: dosimetric issues. Cancer 115:3135–3140

    Article  PubMed  Google Scholar 

  13. de Crevoisier R, Fiorino C, Dubray B (2010) Dosimetric factors predictive of late toxicity in prostate cancer radiotherapy. Cancer Radiother 14:460–468

    Article  PubMed  Google Scholar 

  14. Njeh CF (2008) Tumor delineation: the weakest link in the search for accuracy in radiotherapy. J Med Phys 33:136–140

    Article  PubMed  CAS  Google Scholar 

  15. Cazoulat G, Lesaunier M, Simon A, Haigron P, Acosta O, Louvel G, Lafond C, Chajon E, Leseur J, de Crevoisier R (2011) From image-guided radiotherapy to dose-guided radiotherapy. Cancer Radiother 15:691–698

    Article  PubMed  CAS  Google Scholar 

  16. Chen T, Kim S, Zhou J, Metaxas D, Rajagopal G, Yue N (2009) 3D meshless prostate segmentation and registration in image guided radiotherapy. Med Image Comput Comput Assist Interv 12:43–50

    PubMed  Google Scholar 

  17. Acosta O, Dowling J, Cazoulat G, Simon A, Salvado O, de Crevoisier R, Haigron P (2010) Atlas based segmentation and mapping of organs at risk from planning CT for the development of voxel-wise predictive models of toxicity in prostate radiotherapy. In: Presented at prostate cancer imaging. Computer-aided diagnosis, prognosis, and intervention, international workshop in MICCAI 2010

    Google Scholar 

  18. Collier DC, Burnett SS, Amin M, Bilton S, Brooks C, Ryan A, Roniger D, Tran D, Starkschall G (2003) Assessment of consistency in contouring of normal-tissue anatomic structures. J Appl Clin Med Phys 4:17–24

    Article  PubMed  Google Scholar 

  19. Fiorino C, Reni M, Bolognesi A, Cattaneo GM, Calandrino R (1998) Intra- and inter-observer variability in contouring prostate and seminal vesicles: implications for conformal treatment planning. Radiother Oncol 47:285–292

    Article  PubMed  CAS  Google Scholar 

  20. Gual-Arnau X, Ibanez-Gual MV, Lliso F, Roldan S (2005) Organ contouring for prostate cancer: interobserver and internal organ motion variability. Comput Med Imaging Graph 29:639–647

    Article  PubMed  CAS  Google Scholar 

  21. Fiorino C, Vavassori V, Sanguineti G, Bianchi C, Cattaneo GM, Piazzolla A, Cozzarini C (2002) Rectum contouring variability in patients treated for prostate cancer: impact on rectum dose-volume histograms and normal tissue complication probability. Radiother Oncol 63:249–255

    Article  PubMed  Google Scholar 

  22. Greer PB, Dowling JA, Lambert JA, Fripp J, Parker J, Denham JW, Wratten C, Capp A, Salvado O (2011) A magnetic resonance imaging-based workflow for planning radiation therapy for prostate cancer. Med J Aust 194:S24–S27

    PubMed  Google Scholar 

  23. Dowling JA, Lambert J, Parker J, Salvado O, Fripp J, Capp A, Wratten C, Denham JW, Greer PB (2012) An atlas-based electron density mapping method for magnetic resonance imaging (MRI)-alone treatment planning and adaptive MRI-based prostate radiation therapy. Int J Radiat Oncol Biol Phys 83:e5–e11

    Article  PubMed  Google Scholar 

  24. Costa MJ, Delingette H, Novellas S, Ayache N (2007) Automatic segmentation of bladder and prostate using coupled 3D deformable models. Med Image Comput Comput Assist Interv 10:252–260

    PubMed  Google Scholar 

  25. Aljabar P, Heckemann RAA, Hammers A, Hajnal JVV, Rueckert D (2009) Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy. Neuroimage 46:726–738

    Article  PubMed  CAS  Google Scholar 

  26. Wu M, Rosano C, Lopez-Garcia P, Carter CS, Aizenstein HJ (2007) Optimum template selection for atlas-based segmentation. Neuroimage 34:1612–1618

    Article  PubMed  Google Scholar 

  27. Han X, Hoogeman MS, Levendag PC, Hibbard LS, Teguh DN, Voet P, Cowen AC, Wolf TK (2008) Atlas-based auto-segmentation of head and neck CT images. Med Image Comput Comput Assist Interv 11:434–441

    PubMed  Google Scholar 

  28. Commowick O, Gregoire V, Malandain G (2008) Atlas-based delineation of lymph node levels in head and neck computed tomography images. Radiother Oncol 87:281–289

    Article  PubMed  Google Scholar 

  29. Ramus L, Thariat J, Marcy PY, Pointreau Y, Bera G, Commowick O, Malandain G (2010) Automatic segmentation using atlases in head and neck cancers: methodology. Cancer Radiother 14:206–212

    Article  PubMed  CAS  Google Scholar 

  30. Isgum I, Staring M, Rutten A, Prokop M, Viergever MA, van Ginneken B (2009) Multi-atlas-based segmentation with local decision fusion—application to cardiac and aortic segmentation in CT scans. IEEE Trans Med Imaging 28:1000–1010

    Article  PubMed  Google Scholar 

  31. van Rikxoort EM, Prokop M, de Hoop B, Viergever MA, Pluim JP, van Ginneken B (2010) Automatic segmentation of pulmonary lobes robust against incomplete fissures. IEEE Trans Med Imaging 29:1286–1296

    Article  PubMed  Google Scholar 

  32. Sanda MG, Dunn RL, Michalski J, Sandler HM, Northouse L, Hembroff L, Lin X, Greenfield TK, Litwin MS, Saigal CS, Mahadevan A, Klein E, Kibel A, Pisters LL, Kuban D, Kaplan I, Wood D, Ciezki J, Shah N, Wei JT (2008) Quality of life and satisfaction with outcome among prostate-cancer survivors. N Engl J Med 358:1250–1261

    Article  PubMed  CAS  Google Scholar 

  33. Dowling JA, Fripp J, Chandra S, Pluim JPW, Lambert J, Parker J, Denham J, Greer PB, Salvado O (2011) Fast automatic multi-atlas segmentation of the prostate from 3D MR images. Prost Cancer Imaging Image Anal Image Guid Interv 6963:10–21

    Article  Google Scholar 

  34. Yoo TS (2004) Insight into images. A K Peters, Ltd, Wellesley

    Book  Google Scholar 

  35. Rueckert D, Frangi AF, Schnabel JA (2003) Automatic construction of 3-D statistical deformation models of the brain using nonrigid registration. Med Imaging IEEE Trans 22:1014–1025

    Article  Google Scholar 

  36. Davis BC, Foskey M, Rosenman J, Goyal L, Chang S, Joshi S (2005) Automatic segmentation of intra-treatment CT images for adaptive radiation therapy of the prostate. Med Image Comput Comput Assist Interv 8:442–450

    PubMed  CAS  Google Scholar 

  37. Vercauteren T, Pennec X, Perchant A, Ayache N (2009) Diffeomorphic demons: efficient non-parametric image registration. Neuroimage 45:S61–S72

    Article  PubMed  Google Scholar 

  38. Tang CI, Loblaw DA, Cheung P, Holden L, Morton G, Basran PS, Tirona R, Cardoso M, Pang G, Gardner S, Cesta A (2008) Phase I/II study of a five-fraction hypofractionated accelerated radiotherapy treatment for low-risk localised prostate cancer: early results of pHART3. Clin Oncol (R Coll Radiol) 20:729–737

    Article  CAS  Google Scholar 

  39. Studholme C, Hill DLG, Hawkes DJ (1999) An overlap invariant entropy measure of 3D medical image alignment. Pattern Recognit 32:71–86

    Article  Google Scholar 

  40. Rubeaux M, Nunes J-C, Albera L, Garreau M (2010) Edgeworth-based approximation of mutual information for medical image registration. In: Presented at IPTA 10, international conference on image processing theory, tools and applications, Paris

    Google Scholar 

  41. Pluim JP, Maintz JB, Viergever MA (2003) Mutual-information-based registration of medical images: a survey. IEEE Trans Med Imaging 22:986–1004

    Article  PubMed  Google Scholar 

  42. Pluim JPW, Maintz JBA, Viergever MA (2000) Interpolation artefacts in mutual information-based image registration. Comput Vis Image Underst 77:211–232

    Article  Google Scholar 

  43. Thevenaz P, Blu T, Unser M (2000) Interpolation revisited. IEEE Trans Med Imaging 19:739–758

    Article  PubMed  CAS  Google Scholar 

  44. King CR, Lehmann J, Adler JR, Hai J (2003) CyberKnife radiotherapy for localized prostate cancer: rationale and technical feasibility. Technol Cancer Res Treat 2:25–30

    PubMed  Google Scholar 

  45. Parker J, Kenyon RV, Troxel DE (1983) Comparison of interpolating methods for image resampling. IEEE Trans Med Imaging 2:31–39

    Article  PubMed  CAS  Google Scholar 

  46. Grevera GJ, Udupa JK (1998) An objective comparison of 3-D image interpolation methods. IEEE Trans Med Imaging 17:642–652

    Article  PubMed  CAS  Google Scholar 

  47. Zitova B, Flusser J (2003) Image registration methods: a survey. Image Vis Comput 21:977–1000

    Article  Google Scholar 

  48. Rohlfing T, Brandt R, Menzel R, Maurer CR (2004) Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocol microscopy images of bee brains. Neuroimage 21:1428–1442

    Article  PubMed  Google Scholar 

  49. Rohlfing T, Brandt R, Maurer CR, Menzel R (2001) Bee brains, B-splines and computational democracy: Generating an average shape atlas. In: IEEE workshop on mathematical methods in biomedical image analysis, proceedings, pp 187–194

    Google Scholar 

  50. Dowling J, Fripp J, Freer P, Ourselin S, Salvado O (2009) Automatic atlas-based segmentation of the prostate: a MICCAI 2009 Prostate Segmentation Challenge entry. In: Worskshop in Med Image Comput Comput Assist Interv, pp 17–24

    Google Scholar 

  51. Acosta O, Simon A, Monge F, Commandeur F, Bassirou C, Cazoulat G, de Crevoisier R, Haigron P (2011) Evaluation of multi-atlas-based segmentation of CT scans in prostate cancer radiotherapy. Biomedical Imaging: From Nano to Macro, 2011 IEEE International Symposium on, vol., no., pp.1966,1969, March 30 2011–April 2 2011. doi: 10.1109/ISBI.2011.5872795

    Google Scholar 

  52. Commowick O, Malandain G (2007) Efficient selection of the most similar image in a database for critical structures segmentation. In: Ayache N, Ourselin S, Maeder A (eds) Medical image computing and computer-assisted intervention MICCAI 2007, vol. 4792, lecture notes in computer science. Springer, Berlin, Heidelberg, pp 203–210

    Chapter  Google Scholar 

  53. Roche A, Mériaux S, Keller M, Thirion B (2007) Mixed-effects statistics for group analysis in fMRI: a nonparametric maximum likelihood approach. Neuroimage 38:501–510

    Article  PubMed  Google Scholar 

  54. Artaechevarria X, Munoz-Barrutia A, Ortiz-de-Solorzano C (2009) Combination strategies in multi-atlas image segmentation: application to brain MR data. IEEE Trans Med Imaging 28:1266–1277

    Article  PubMed  Google Scholar 

  55. Langerak TR, van der Heide UA, Kotte ANTJ, Viergever MA, van Vulpen M, Pluim JPW (2010) Label fusion in atlas-based segmentation using a selective and iterative method for performance level estimation (SIMPLE). IEEE Trans Med Imaging 29:2000–2008

    Article  PubMed  Google Scholar 

  56. Warfield SK, Zou KH, Wells WM (2004) Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation. IEEE Trans Med Imaging 23:903–921

    Article  PubMed  Google Scholar 

  57. Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26:297–302

    Article  Google Scholar 

  58. Chandra S, Dowling J, Shen K, Raniga P, Pluim J, Greer P, Salvado O, Fripp J (2012) Patient specific prostate segmentation in 3D magnetic resonance images. IEEE Trans Med Imaging 31:1955–1964

    Article  PubMed  Google Scholar 

  59. Martin S, Troccaz J, Daanenc V (2010) Automated segmentation of the prostate in 3D MR images using a probabilistic atlas and a spatially constrained deformable model. Med Phys 37:1579–1590

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Acosta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Acosta, O., Dowling, J., Drean, G., Simon, A., de Crevoisier, R., Haigron, P. (2014). Multi-Atlas-Based Segmentation of Pelvic Structures from CT Scans for Planning in Prostate Cancer Radiotherapy. In: El-Baz, A., Saba, L., Suri, J. (eds) Abdomen and Thoracic Imaging. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-8498-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8498-1_24

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-8497-4

  • Online ISBN: 978-1-4614-8498-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics