Skip to main content

LINAC: Past, Present, and Future of Radiosurgery

  • Chapter

Abstract

Radiosurgery is truly minimally invasive treatment, delivering therapeutic energy to an accurately defined target without an incision. It has been used to treat a wide variety of pathologic conditions including benign and malignant brain tumors, vascular lesions such as arteriovenous malformations, and pain syndromes such as trigeminal neuralgia. Although initially described with use of the Gamma Knife, stereotactic radiosurgery is now most commonly delivered using linear accelerators (LINACs). This review covers the history of the development of LINACs, the modifications necessary to deliver radiosurgery, and current and future applications of LINAC radiosurgery.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Leksell L. The stereotaxic method and radiosurgery of the brain. Acta Chir Scand. 1951;102(4):316–9.

    CAS  PubMed  Google Scholar 

  2. Schultz CJGM, Mueller WM. Modified linear accelerator radiosurgery: principles and techniques. In: IM G, editor. LINAC and Gamma Knife radiosurgery. Chicago: The American Association of Neurological Surgeons; 1999. p. 19–30.

    Google Scholar 

  3. Friedman WA. Linear accelerator radiosurgery. Clin Neurosurg. 1992;38:445–71.

    CAS  PubMed  Google Scholar 

  4. Kondziolka D, Lunsford LD, Loeffler JS, Friedman WA. Radiosurgery and radiotherapy: observations and clarifications. J Neurosurg. 2004;101(4):585–9.

    Article  PubMed  Google Scholar 

  5. Larson DA, Flickinger JC, Loeffler JS. The radiobiology of radiosurgery. Int J Radiat Oncol Biol Phys. 1993;25(3):557–61.

    Article  CAS  PubMed  Google Scholar 

  6. Betti OO, Galmarini D, Derechinsky V. Radiosurgery with a linear accelerator. Methodological aspects. Stereotact Funct Neurosurg. 1991;57(1–2):87–98.

    Article  CAS  PubMed  Google Scholar 

  7. Wideroe R. Uber ein neues Prinzip Zur Herstellung hoher Spannungen. Archiv Elektrot. 1928;21:387.

    Article  Google Scholar 

  8. Thwaites DI, Tuohy JB. Back to the future: the history and development of the clinical linear accelerator. Phys Med Biol. 2006;51(13):R343–62.

    Article  PubMed  Google Scholar 

  9. Bova FJ. Radiation physics. Neurosurg Clin N Am. 1990;1(4): 909–31.

    CAS  PubMed  Google Scholar 

  10. Hoh DJ, Liu CY, Pagnini PG, Yu C, Wang MY, Apuzzo ML. Chained lightning, part I: exploitation of energy and radiobiological principles for therapeutic purposes. Neurosurgery. 2007;61(1):14–27; discussion 28.

    Google Scholar 

  11. Hansen WW. A type of electrical resonator. J Appl Phys. 1938;9:654–63.

    Article  Google Scholar 

  12. Benedict S, Bova F, Clark B, Goetsch S, Hinson W, Leavitt D, et al. Anniversary paper: the role of medical physicists in developing stereotactic radiosurgery. Med Phys. 2008;35(9):4262–77.

    Article  PubMed  Google Scholar 

  13. Gildenberg P. The history of stereotactic neurosurgery. In: Friedman WA, Winn HR, Mayberg MR, editors. Neurosurgery Clinics of North America: stereotactic neurosurgery. Philadelphia: W.B. Saunders; 1990. p. 765–80.

    Google Scholar 

  14. Larsson B, Leksell L, Rexed B, Sourander P, Mair W, Andersson B. The high-energy proton beam as a neurosurgical tool. Nature. 1958;182(4644):1222–3.

    Article  CAS  PubMed  Google Scholar 

  15. Leksell L. Cerebral radiosurgery. I. Gammathalanotomy in two cases of intractable pain. Acta Chir Scand. 1968;134(8):585–95.

    CAS  PubMed  Google Scholar 

  16. Kjellberg RN, Hanamura T, Davis KR, Lyons SL, Adams RD. Bragg-peak proton-beam therapy for arteriovenous malformations of the brain. N Engl J Med. 1983;309(5):269–74.

    Article  CAS  PubMed  Google Scholar 

  17. Lyman JT, Phillips MH, Frankel KA, Fabrikant JI. Stereotactic frame for neuroradiology and charged particle Bragg peak radiosurgery of intracranial disorders. Int J Radiat Oncol Biol Phys. 1989;16(6):1615–21.

    Article  CAS  PubMed  Google Scholar 

  18. Larsson B, Liden K, Sarby B. Irradiation of small structures through the intact skull. Acta Radiol Ther Phys Biol. 1974;13(6):512–34.

    Article  CAS  PubMed  Google Scholar 

  19. Knapp EA, Knapp BC, Potter JM. Standing wave high energy linear accelerator structures. Rev Sci Instrum. 1968;39:979–91.

    Article  Google Scholar 

  20. Hoh DJ, Liu CY, Chen JC, Pagnini PG, Yu C, Wang MY, et al. Chained lightning, part II: neurosurgical principles, radiosurgical technology, and the manipulation of energy beam delivery. Neurosurgery. 2007;61(3):433–46. discussion 46.

    Article  PubMed  Google Scholar 

  21. Gillies BA, O’Brien PF, McVittie R, McParland C, Easton H. Engineering modifications for dynamic stereotactically assisted radiotherapy. Med Phys. 1993;20(5):1491–5.

    Article  CAS  PubMed  Google Scholar 

  22. Betti O, Derechinsky V. [Multiple-beam stereotaxic irradiation]. Neurochirurgie. 1983;29(4):295–8.

    CAS  PubMed  Google Scholar 

  23. Betti OO. Treatment of arteriovenous malformations with the linear accelerator. Appl Neurophysiol. 1987;50(1–6):262.

    CAS  PubMed  Google Scholar 

  24. Heifetz MD, Wexler M, Thompson R. Single-beam radiotherapy knife. A practical theoretical model. J Neurosurg. 1984;60(4):814–8.

    Article  CAS  PubMed  Google Scholar 

  25. Avanzo RC, Chierego G, Marchetti C, Pozza F, Colombo F, Benedetti A, et al. [Stereotaxic irradiation with a linear accelerator]. Radiol Med. 1984;70(3):124–9.

    CAS  PubMed  Google Scholar 

  26. Colombo F, Benedetti A, Pozza F, Avanzo R, Chierego G, Marchetti C, et al. Radiosurgery using a 4MV linear accelerator. Technique and radiobiologic implications. Acta Radiol Suppl. 1986;369:603–7.

    CAS  PubMed  Google Scholar 

  27. Colombo F, Benedetti A, Pozza F, Avanzo RC, Marchetti C, Chierego G, et al. External stereotactic irradiation by linear accelerator. Neurosurgery. 1985;16(2):154–60.

    Article  CAS  PubMed  Google Scholar 

  28. Colombo F, Benedetti A, Zanardo A, Pozza F, Avanzo R, Chierego G, et al. New technique for three-dimensional linear accelerator radiosurgery. Acta Neurochir Suppl (Wien). 1987;39:38–40.

    Article  CAS  Google Scholar 

  29. Hartmann GH, Schlegel W, Sturm V, Kober B, Pastyr O, Lorenz WJ. Cerebral radiation surgery using moving field irradiation at a linear accelerator facility. Int J Radiat Oncol Biol Phys. 1985;11(6): 1185–92.

    Article  CAS  PubMed  Google Scholar 

  30. Houdek PV, Fayos JV, Van Buren JM, Ginsberg MS. Stereotaxic radiotherapy technique for small intracranial lesions. Med Phys. 1985;12(4):469–72.

    Article  CAS  PubMed  Google Scholar 

  31. Podgorsak EB, Olivier A, Pla M, Hazel J, de Lotbiniere A, Pike B. Physical aspects of dynamic stereotactic radiosurgery. Appl Neurophysiol. 1987;50(1–6):263–8.

    CAS  PubMed  Google Scholar 

  32. Podgorsak EB, Olivier A, Pla M, Lefebvre PY, Hazel J. Dynamic stereotactic radiosurgery. Int J Radiat Oncol Biol Phys. 1988;14(1): 115–26.

    Article  CAS  PubMed  Google Scholar 

  33. Winston KR, Lutz W. Linear accelerator as a neurosurgical tool for stereotactic radiosurgery. Neurosurgery. 1988;22(3):454–64.

    Article  CAS  PubMed  Google Scholar 

  34. Friedman WA, Bova FJ. The University of Florida radiosurgery system. Surg Neurol. 1989;32(5):334–42.

    Article  CAS  PubMed  Google Scholar 

  35. Leavitt DD, Gibbs Jr FA, Heilbrun MP, Moeller JH, Takach Jr GA. Dynamic field shaping to optimize stereotactic radiosurgery. Int J Radiat Oncol Biol Phys. 1991;21(5):1247–55.

    Article  CAS  PubMed  Google Scholar 

  36. Yin FF, Zhu J, Yan H, Gaun H, Hammoud R, Ryu S, et al. Dosimetric characteristics of Novalis shaped beam surgery unit. Med Phys. 2002;29(8):1729–38.

    Article  PubMed  Google Scholar 

  37. Adler Jr JR, Chang SD, Murphy MJ, Doty J, Geis P, Hancock SL. The Cyberknife: a frameless robotic system for radiosurgery. Stereotact Funct Neurosurg. 1997;69(1–4 Pt 2):124–8.

    Article  PubMed  Google Scholar 

  38. Murphy MJ. An automatic six-degree-of-freedom image registration algorithm for image-guided frameless stereotaxic radiosurgery. Med Phys. 1997;24(6):857–66.

    Article  CAS  PubMed  Google Scholar 

  39. Huntzinger C, Friedman W, Bova F, Fox T, Bouchet L, Boeh L. Trilogy image-guided stereotactic radiosurgery. Med Dosim. 2007;32(2):121–33.

    Article  PubMed  Google Scholar 

  40. Gerszten PC, Burton SA, Ozhasoglu C, McCue KJ, Quinn AE. Radiosurgery for benign intradural spinal tumors. Neurosurgery. 2008;62(4):887–95. discussion 95–6.

    Article  PubMed  Google Scholar 

  41. Levine AM, Coleman C, Horasek S. Stereotactic radiosurgery for the treatment of primary sarcomas and sarcoma metastases of the spine. Neurosurgery. 2009;64(2 Suppl):A54–9.

    Article  PubMed  Google Scholar 

  42. Thariat J, Castelli J, Chanalet S, Marcie S, Mammar H, Bondiau PY. CyberKnife stereotactic radiotherapy for spinal tumors: value of computed tomographic myelography in spinal cord delineation. Neurosurgery. 2009;64(2 Suppl):A60–6.

    Article  PubMed  Google Scholar 

  43. Tsai JT, Lin JW, Chiu WT, Chu WC. Assessment of image-guided CyberKnife radiosurgery for metastatic spine tumors. J Neurooncol. 2009;94:119–27.

    Article  PubMed  Google Scholar 

  44. Samii M, Matthies C. Management of 1000 vestibular schwannomas (acoustic neuromas): surgical management and results with an emphasis on complications and how to avoid them. Neurosurgery. 1997;40(1):11–21; discussion 23.

    Google Scholar 

  45. Samii M, Matthies C. Management of 1000 vestibular schwannomas (acoustic neuromas): the facial nerve—preservation and restitution of function. Neurosurgery. 1997;40(4):684–94. discussion 94–5.

    Article  CAS  PubMed  Google Scholar 

  46. Samii M, Matthies C. Management of 1000 vestibular schwannomas (acoustic neuromas): hearing function in 1000 tumor resections. Neurosurgery. 1997;40(2):248–60. discussion 60–2.

    Article  CAS  PubMed  Google Scholar 

  47. Leksell L. A note on the treatment of acoustic tumours. Acta Chir Scand. 1971;137(8):763–5.

    CAS  PubMed  Google Scholar 

  48. Spiegelmann R, Lidar Z, Gofman J, Alezra D, Hadani M, Pfeffer R. Linear accelerator radiosurgery for vestibular schwannoma. J Neurosurg. 2001;94(1):7–13.

    Article  CAS  PubMed  Google Scholar 

  49. Litre F, Rousseaux P, Jovenin N, Bazin A, Peruzzi P, Wdowczyk D, et al. Fractionated stereotactic radiotherapy for acoustic neuromas: a prospective monocenter study of about 158 cases. Radiother Oncol. 2013;106:169–74.

    Article  PubMed  Google Scholar 

  50. Friedman WA, Bradshaw P, Myers A, Bova FJ. Linear accelerator radiosurgery for vestibular schwannomas. J Neurosurg. 2006;105(5):657–61.

    Article  PubMed  Google Scholar 

  51. van de Langenberg R, Dohmen AJ, de Bondt BJ, Nelemans PJ, Baumert BG, Stokroos RJ. Volume changes after stereotactic LINAC radiotherapy in vestibular schwannoma: control rate and growth patterns. Int J Radiat Oncol Biol Phys. 2012;84(2):343–9.

    Article  PubMed  Google Scholar 

  52. Sekhar LN, Jannetta PJ, Burkhart LE, Janosky JE. Meningiomas involving the clivus: a six-year experience with 41 patients. Neurosurgery. 1990;27(5):764–81. discussion 81.

    Article  CAS  PubMed  Google Scholar 

  53. Sekhar LN, Linskey ME, Sen CN, Altschuler EM. Surgical management of lesions within the cavernous sinus. Clin Neurosurg. 1991;37:440–89.

    CAS  PubMed  Google Scholar 

  54. Simpson D. The recurrence of intracranial meningiomas after surgical treatment. J Neurol Neurosurg Psychiatry. 1957;20(1):22–39.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Pollock BE, Stafford SL, Utter A, Giannini C, Schreiner SA. Stereotactic radiosurgery provides equivalent tumor control to Simpson Grade 1 resection for patients with small- to medium-size meningiomas. Int J Radiat Oncol Biol Phys. 2003;55(4):1000–5.

    Article  PubMed  Google Scholar 

  56. Valentino V, Schinaia G, Raimondi AJ. The results of radiosurgical management of 72 middle fossa meningiomas. Acta Neurochir (Wien). 1993;122(1–2):60–70.

    Article  CAS  Google Scholar 

  57. Villavicencio AT, Black PM, Shrieve DC, Fallon MP, Alexander E, Loeffler JS. Linac radiosurgery for skull base meningiomas. Acta Neurochir (Wien). 2001;143(11):1141–52.

    Article  CAS  Google Scholar 

  58. Engenhart R, Kimmig BN, Hover KH, Wowra B, Sturm V, van Kaick G, et al. Stereotactic single high dose radiation therapy of benign intracranial meningiomas. Int J Radiat Oncol Biol Phys. 1990;19(4):1021–6.

    Article  CAS  PubMed  Google Scholar 

  59. Spiegelmann R, Nissim O, Menhel J, Alezra D, Pfeffer MR. Linear accelerator radiosurgery for meningiomas in and around the cavernous sinus. Neurosurgery. 2002;51(6):1373–9. discussion 9–80.

    PubMed  Google Scholar 

  60. Hakim R, Alexander 3rd E, Loeffler JS, Shrieve DC, Wen P, Fallon MP, et al. Results of linear accelerator-based radiosurgery for intracranial meningiomas. Neurosurgery. 1998;42(3):446–53. discussion 53–4.

    Article  CAS  PubMed  Google Scholar 

  61. Friedman WA, Murad GJ, Bradshaw P, Amdur RJ, Mendenhall WM, Foote KD, et al. Linear accelerator surgery for meningiomas. J Neurosurg. 2005;103(2):206–9.

    Article  PubMed  Google Scholar 

  62. Hashimoto N, Rabo CS, Okita Y, Kinoshita M, Kagawa N, Fujimoto Y, et al. Slower growth of skull base meningiomas compared with non-skull base meningiomas based on volumetric and biological studies. J Neurosurg. 2012;116(3):574–80.

    Article  PubMed  Google Scholar 

  63. Gerszten PC, Chen S, Quader M, Xu Y, Novotny Jr J, Flickinger JC. Radiosurgery for benign tumors of the spine using the Synergy S with cone-beam computed tomography image guidance. J Neurosurg. 2012;117(Suppl):197–202.

    PubMed  Google Scholar 

  64. Lohr F, Pirzkall A, Hof H, Fleckenstein K, Debus J. Adjuvant treatment of brain metastases. Semin Surg Oncol. 2001;20(1):50–6.

    Article  CAS  PubMed  Google Scholar 

  65. DeAngelis LM. Brain tumors. N Engl J Med. 2001;344(2): 114–23.

    Article  CAS  PubMed  Google Scholar 

  66. Patchell RA, Tibbs PA, Walsh JW, Dempsey RJ, Maruyama Y, Kryscio RJ, et al. A randomized trial of surgery in the treatment of single metastases to the brain. N Engl J Med. 1990;322(8): 494–500.

    Article  CAS  PubMed  Google Scholar 

  67. Noordijk EM, Vecht CJ, Haaxma-Reiche H, Padberg GW, Voormolen JH, Hoekstra FH, et al. The choice of treatment of single brain metastasis should be based on extracranial tumor activity and age. Int J Radiat Oncol Biol Phys. 1994;29(4):711–7.

    Article  CAS  PubMed  Google Scholar 

  68. Mintz AH, Kestle J, Rathbone MP, Gaspar L, Hugenholtz H, Fisher B, et al. A randomized trial to assess the efficacy of surgery in addition to radiotherapy in patients with a single cerebral metastasis. Cancer. 1996;78(7):1470–6.

    Article  CAS  PubMed  Google Scholar 

  69. Haines SJ. Moving targets and ghosts of the past: outcome measurement in brain tumour therapy. J Clin Neurosci. 2002;9(2): 109–12.

    Article  PubMed  Google Scholar 

  70. Sturm V, Kober B, Hover KH, Schlegel W, Boesecke R, Pastyr O, et al. Stereotactic percutaneous single dose irradiation of brain metastases with a linear accelerator. Int J Radiat Oncol Biol Phys. 1987;13(2):279–82.

    Article  CAS  PubMed  Google Scholar 

  71. Sturm V, Kimmig B, Engenhardt R, Schlegel W, Pastyr O, Treuer H, et al. Radiosurgical treatment of cerebral metastases. Method, indications and results. Stereotact Funct Neurosurg. 1991;57(1–2):7–10.

    Article  CAS  PubMed  Google Scholar 

  72. Voges J, Treuer H, Erdmann J, Schlegel W, Pastyr O, Muller RP, et al. Linac radiosurgery in brain metastases. Acta Neurochir Suppl. 1994;62:72–6.

    Article  CAS  PubMed  Google Scholar 

  73. Alexander 3rd E, Moriarty TM, Davis RB, Wen PY, Fine HA, Black PM, et al. Stereotactic radiosurgery for the definitive, noninvasive treatment of brain metastases. J Natl Cancer Inst. 1995;87(1):34–40.

    Article  PubMed  Google Scholar 

  74. Black PM. Solitary brain metastases. Radiation, resection, or radiosurgery? Chest. 1993;103(4 Suppl):367S–9.

    Article  CAS  PubMed  Google Scholar 

  75. Joseph J, Adler JR, Cox RS, Hancock SL. Linear accelerator-based stereotaxic radiosurgery for brain metastases: the influence of number of lesions on survival. J Clin Oncol. 1996;14(4):1085–92.

    CAS  PubMed  Google Scholar 

  76. Fuller BG, Kaplan ID, Adler J, Cox RS, Bagshaw MA. Stereotaxic radiosurgery for brain metastases: the importance of adjuvant whole brain irradiation. Int J Radiat Oncol Biol Phys. 1992;23(2): 413–8.

    Article  CAS  PubMed  Google Scholar 

  77. Adler JR, Cox RS, Kaplan I, Martin DP. Stereotactic radiosurgical treatment of brain metastases. J Neurosurg. 1992;76(3):444–9.

    Article  CAS  PubMed  Google Scholar 

  78. Auchter RM, Lamond JP, Alexander E, Buatti JM, Chappell R, Friedman WA, et al. A multiinstitutional outcome and prognostic factor analysis of radiosurgery for resectable single brain metastasis. Int J Radiat Oncol Biol Phys. 1996;35(1):27–35.

    Article  CAS  PubMed  Google Scholar 

  79. Goodman KA, Sneed PK, McDermott MW, Shiau CY, Lamborn KR, Chang S, et al. Relationship between pattern of enhancement and local control of brain metastases after radiosurgery. Int J Radiat Oncol Biol Phys. 2001;50(1):139–46.

    Article  CAS  PubMed  Google Scholar 

  80. Shiau CY, Sneed PK, Shu HK, Lamborn KR, McDermott MW, Chang S, et al. Radiosurgery for brain metastases: relationship of dose and pattern of enhancement to local control. Int J Radiat Oncol Biol Phys. 1997;37(2):375–83.

    Article  CAS  PubMed  Google Scholar 

  81. Gaspar L, Scott C, Rotman M, Asbell S, Phillips T, Wasserman T, et al. Recursive partitioning analysis (RPA) of prognostic factors in three Radiation Therapy Oncology Group (RTOG) brain metastases trials. Int J Radiat Oncol Biol Phys. 1997;37(4):745–51.

    Article  CAS  PubMed  Google Scholar 

  82. Swinson BM, Friedman WA. Linear accelerator stereotactic radiosurgery for metastatic brain tumors: 17 years of experience at the University of Florida. Neurosurgery. 2008;62(5):1018–31. discussion 31–2.

    Article  PubMed  Google Scholar 

  83. Shrieve DC, Alexander 3rd E, Black PM, Wen PY, Fine HA, Kooy HM, et al. Treatment of patients with primary glioblastoma multiforme with standard postoperative radiotherapy and radiosurgical boost: prognostic factors and long-term outcome. J Neurosurg. 1999;90(1):72–7.

    Article  CAS  PubMed  Google Scholar 

  84. Hall WA, Djalilian HR, Sperduto PW, Cho KH, Gerbi BJ, Gibbons JP, et al. Stereotactic radiosurgery for recurrent malignant gliomas. J Clin Oncol. 1995;13(7):1642–8.

    CAS  PubMed  Google Scholar 

  85. Masciopinto JE, Levin AB, Mehta MP, Rhode BS. Stereotactic radiosurgery for glioblastoma: a final report of 31 patients. J Neurosurg. 1995;82(4):530–5.

    Article  CAS  PubMed  Google Scholar 

  86. Curran Jr WJ, Scott CB, Horton J, Nelson JS, Weinstein AS, Fischbach AJ, et al. Recursive partitioning analysis of prognostic factors in three Radiation Therapy Oncology Group malignant glioma trials. J Natl Cancer Inst. 1993;85(9):704–10.

    Article  PubMed  Google Scholar 

  87. Sarkaria JN, Mehta MP, Loeffler JS, Buatti JM, Chappell RJ, Levin AB, et al. Radiosurgery in the initial management of malignant gliomas: survival comparison with the RTOG recursive partitioning analysis. Radiation Therapy Oncology Group. Int J Radiat Oncol Biol Phys. 1995;32(4):931–41.

    Article  CAS  PubMed  Google Scholar 

  88. Ulm AJ III, Friedman WA, Bradshaw P, Foote KD, Bova FJ. Radiosurgery in the treatment of malignant gliomas: the University of Florida experience. Neurosurgery. 2005;57(3):512–7; discussion 517.

    Google Scholar 

  89. Irish WD, Macdonald DR, Cairncross JG. Measuring bias in uncontrolled brain tumor trials—to randomize or not to randomize? Can J Neurol Sci. 1997;24(4):307–12.

    Article  CAS  PubMed  Google Scholar 

  90. Curran Jr WJ, Scott CB, Weinstein AS, Martin LA, Nelson JS, Phillips TL, et al. Survival comparison of radiosurgery-eligible and -ineligible malignant glioma patients treated with hyperfractionated radiation therapy and carmustine: a report of Radiation Therapy Oncology Group 83–02. J Clin Oncol. 1993;11(5):857–62.

    PubMed  Google Scholar 

  91. Souhami L, Seiferheld W, Brachman D, Podgorsak EB, Werner-Wasik M, Lustig R, et al. Randomized comparison of stereotactic radiosurgery followed by conventional radiotherapy with carmustine to conventional radiotherapy with carmustine for patients with glioblastoma multiforme: report of Radiation Therapy Oncology Group 93-05 protocol. Int J Radiat Oncol Biol Phys. 2004;60(3): 853–60.

    Article  PubMed  Google Scholar 

  92. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10): 987–96.

    Article  CAS  PubMed  Google Scholar 

  93. Pollock BE, Flickinger JC, Lunsford LD, Maitz A, Kondziolka D. Factors associated with successful arteriovenous malformation radiosurgery. Neurosurgery. 1998;42(6):1239–44. discussion 44–7.

    Article  CAS  PubMed  Google Scholar 

  94. Ellis TL, Friedman WA, Bova FJ, Kubilis PS, Buatti JM. Analysis of treatment failure after radiosurgery for arteriovenous malformations. J Neurosurg. 1998;89(1):104–10.

    Article  CAS  PubMed  Google Scholar 

  95. Friedman WA, Bova FJ, Bollampally S, Bradshaw P. Analysis of factors predictive of success or complications in arteriovenous malformation radiosurgery. Neurosurgery. 2003;52(2):296–307; discussion 308.

    Google Scholar 

  96. Foote KD, Friedman WA, Ellis TL, Bova FJ, Buatti JM, Meeks SL. Salvage retreatment after failure of radiosurgery in patients with arteriovenous malformations. J Neurosurg. 2003;98(2): 337–41.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maryam Rahman M.D., M.S. or William A. Friedman M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rahman, M., Murad, G.J.A., Bova, F.J., Friedman, W.A. (2015). LINAC: Past, Present, and Future of Radiosurgery. In: Chin, L., Regine, W. (eds) Principles and Practice of Stereotactic Radiosurgery. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8363-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8363-2_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8362-5

  • Online ISBN: 978-1-4614-8363-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics