Skip to main content

PAD Enzymes in Female Reproductive Tissues and Cancer Pathogenesis

  • Chapter
  • First Online:
Protein Deimination in Human Health and Disease

Abstract

Increasing clinical evidence now suggests that peptidyl-arginine deiminase (PAD) enzymes, especially PAD4 and possibly PAD2, have important roles in tumor progression. Further linking PADs and cancer are recent findings showing that treatment of cancer cell lines and mouse models of disease with PAD inhibitors significantly suppresses tumor growth and, interestingly, also inflammation. Current functional target proteins for PAD-catalyzed citrullination in cancer include transcription factors, co-regulators, and histones, the latter of which alter gene expression patterns in multiple cancerous cell lines. As the novel relationship between PADs, inflammation, and cancer unfolds, next-generation isozyme-specific PAD inhibitors may have therapeutic potential to regulate both the inflammatory tumor microenvironment and tumor cell growth. In this chapter we first discuss expression patterns of PADs in reproductive tissues, focusing on their endocrine regulation, as this appears to have major implication for expression, catalytic activity, and tumorigenesis. Next, the chapter details our current understanding of the molecular pathophysiological roles of PADs in cancer. Finally, we discuss the evolving role of PADs in inflammation, in the context of tumorigenesis, with discussion of the potential of new isozyme-specific PAD inhibitors to serve as adjuvant therapy for malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed OI et al (2006) Prognostic value of serum level of interleukin-6 and interleukin-8 in metastatic breast cancer patients. Egypt J Immunol 13(2):61–68

    PubMed  Google Scholar 

  • Akiyama K, Inoue K, Senshu T (1989) Immunocytochemical study of peptidylarginine deiminase: localization of its immunoreactivity in prolactin cells of female rat pituitaries. Endocrinology 125(3):1121–1127

    Article  PubMed  CAS  Google Scholar 

  • Anzilotti C et al (2010) Peptidylarginine deiminase 4 and citrullination in health and disease. Autoimmun Rev 9(3):158–160

    Article  PubMed  CAS  Google Scholar 

  • Arber N, Levin B (2008) Chemoprevention of colorectal neoplasia: the potential for personalized medicine. Gastroenterology 134(4):1224–1237

    Article  PubMed  CAS  Google Scholar 

  • Asaga H et al (2001) Immunocytochemical localization of peptidylarginine deiminase in human eosinophils and neutrophils. J Leukoc Biol 70(1):46–51

    PubMed  CAS  Google Scholar 

  • Bachelot T et al (2003) Prognostic value of serum levels of interleukin 6 and of serum and plasma levels of vascular endothelial growth factor in hormone-refractory metastatic breast cancer patients. Br J Cancer 88(11):1721–1726

    Article  PubMed  CAS  Google Scholar 

  • Barrett T et al (2009) NCBI GEO: archive for high-throughput functional genomic data. Nucleic Acids Res 37(Database issue):D885–D890

    Article  PubMed  CAS  Google Scholar 

  • Beral V et al (2007) Ovarian cancer and hormone replacement therapy in the Million Women Study. Lancet 369(9574):1703–1710

    Article  PubMed  CAS  Google Scholar 

  • Bernstein L (2006) The risk of breast, endometrial and ovarian cancer in users of hormonal preparations. Basic Clin Pharmacol Toxicol 98(3):288–296

    Article  PubMed  CAS  Google Scholar 

  • Bertucci F et al (2004) Identification and validation of an ERBB2 gene expression signature in breast cancers. Oncogene 23(14):2564–2575

    Article  PubMed  CAS  Google Scholar 

  • Bourdeau V et al (2004) Genome-wide identification of high-affinity estrogen response elements in human and mouse. Mol Endocrinol 18(6):1411–1427

    Article  PubMed  CAS  Google Scholar 

  • Brahmajosyula M, Miyake M (2011) Localization and expression of peptidylarginine deiminase 4 (PAD4) in mammalian oocytes and preimplantation embryos. Zygote 1–11

    Google Scholar 

  • Bulletti C et al (2010) Endometriosis and infertility. J Assist Reprod Genet 27(8):441–447

    Article  PubMed  Google Scholar 

  • Butcher RL, Collins WE, Fugo NW (1974) Plasma concentration of LH, FSH, prolactin, progesterone and estradiol-17beta throughout the 4-day estrous cycle of the rat. Endocrinology 94(6):1704–1708

    Article  PubMed  CAS  Google Scholar 

  • Cafaro TA et al (2010) Peptidylarginine deiminase type 2 is over expressed in the glaucomatous optic nerve. Mol Vis 16:1654–1658

    PubMed  CAS  Google Scholar 

  • Calvo E et al (2012) Specific transcriptional response of four blockers of estrogen receptors on estradiol-modulated genes in the mouse mammary gland. Breast Cancer Res Treat 134(2):625–647

    Article  PubMed  CAS  Google Scholar 

  • Cebola I, Peinado MA (2012) Epigenetic deregulation of the COX pathway in cancer. Prog Lipid Res 51(4):301–313

    Article  PubMed  CAS  Google Scholar 

  • Chai Y et al (2001) c-Fos oncogene regulator Elk-1 interacts with BRCA1 splice variants BRCA1a/1b and enhances BRCA1a/1b-mediated growth suppression in breast cancer cells. Oncogene 20(11):1357–1367

    Article  PubMed  CAS  Google Scholar 

  • Chang X, Fang K (2010) PADI4 and tumourigenesis. Cancer Cell Int 10:7

    Article  PubMed  Google Scholar 

  • Chang X, Han J (2006) Expression of peptidylarginine deiminase type 4 (PAD4) in various tumors. Mol Carcinog 45(3):183–196

    Article  PubMed  CAS  Google Scholar 

  • Chang X et al (2005) Localization of peptidylarginine deiminase 4 (PADI4) and citrullinated protein in synovial tissue of rheumatoid arthritis. Rheumatology (Oxford) 44(1):40–50

    Article  CAS  Google Scholar 

  • Chang X et al (2009) Increased PADI4 expression in blood and tissues of patients with malignant tumors. BMC Cancer 9:40

    Article  PubMed  Google Scholar 

  • Cherrington BD et al (2010) Potential role for peptidylarginine deiminase 2 (PAD2) in citrullination of canine mammary epithelial cell histones. PLoS One 5(7):e11768

    Article  PubMed  Google Scholar 

  • Cherrington BD et al (2012a) Comparative analysis of peptidylarginine deiminase-2 expression in canine, feline and human mammary tumours. J Comp Pathol 147(2–3):139–146

    Article  PubMed  CAS  Google Scholar 

  • Cherrington BD et al (2012b) Potential role for PAD2 in gene regulation in breast cancer cells. PLoS One 7(7):e41242

    Article  PubMed  CAS  Google Scholar 

  • Chumanevich AA et al (2011) Suppression of colitis in mice by Cl-amidine: a novel peptidylarginine deiminase inhibitor. Am J Physiol Gastrointest Liver Physiol 300(6):G929–G38

    Article  PubMed  CAS  Google Scholar 

  • Cole SW (2009) Chronic inflammation and breast cancer recurrence. J Clin Oncol 27(21):3418–3419

    Article  PubMed  Google Scholar 

  • Concannon PW (1986) Canine pregnancy and parturition. Vet Clin North Am Small Anim Pract 16(3):453–475

    PubMed  CAS  Google Scholar 

  • Coudane F et al (2011) Deimination and expression of peptidylarginine deiminases during cutaneous wound healing in mice. Eur J Dermatol 21(3):376–384

    PubMed  CAS  Google Scholar 

  • Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420(6917):860–867

    Article  PubMed  CAS  Google Scholar 

  • Dong S et al (2005) Regulation of the expression of peptidylarginine deiminase type II gene (PADI2) in human keratinocytes involves Sp1 and Sp3 transcription factors. J Invest Dermatol 124(5):1026–1033

    Article  PubMed  CAS  Google Scholar 

  • Dong S, Zhang Z, Takahara H (2007) Estrogen-enhanced peptidylarginine deiminase type IV gene (PADI4) expression in MCF-7 cells is mediated by estrogen receptor-alpha-promoted transfactors activator protein-1, nuclear factor-Y, and Sp1. Mol Endocrinol 21(7):1617–1629

    Article  PubMed  CAS  Google Scholar 

  • Elias KA, Weiner RI (1984) Direct arterial vascularization of estrogen-induced prolactin-secreting anterior pituitary tumors. Proc Natl Acad Sci U S A 81(14):4549–4553

    Article  PubMed  CAS  Google Scholar 

  • Esposito G et al (2007) Peptidylarginine deiminase (PAD) 6 is essential for oocyte cytoskeletal sheet formation and female fertility. Mol Cell Endocrinol 273(1–2):25–31

    Article  PubMed  CAS  Google Scholar 

  • Foulquier C et al (2007) Peptidyl arginine deiminase type 2 (PAD 2) and PAD 4 but not PAD 1, PAD 3, and PAD 6 are expressed in rheumatoid arthritis synovium in close association with tissue inflammation. Arthritis Rheum 56(11):3541–3553

    Article  PubMed  CAS  Google Scholar 

  • Guo Q, Fast W (2011) Citrullination of inhibitor of growth 4 (ING4) by peptidylarginine deminase 4 (PAD4) disrupts the interaction between ING4 and p53. J Biol Chem 286(19):17069–17078

    Article  PubMed  CAS  Google Scholar 

  • Hein A et al. (2013) Hormone replacement therapy and prognosis in ovarian cancer patients. Eur J Cancer Prev 22(1):52–58

    Google Scholar 

  • Hewitt SC et al (2003) Estrogen receptor-dependent genomic responses in the uterus mirror the biphasic physiological response to estrogen. Mol Endocrinol 17(10):2070–2083

    Article  PubMed  CAS  Google Scholar 

  • Horibata S, Coonrod SA, Cherrington BD (2012) Role for peptidylarginine deiminase enzymes in disease and female reproduction. J Reprod Dev 58(3):274–282

    Article  PubMed  CAS  Google Scholar 

  • Hueber W et al (2007) Proteomic analysis of secreted proteins in early rheumatoid arthritis: anti-citrulline autoreactivity is associated with up regulation of proinflammatory cytokines. Ann Rheum Dis 66(6):712–719

    Article  PubMed  CAS  Google Scholar 

  • Kan R et al. (2011) Regulation of mouse oocyte microtubule and organelle dynamics by PADI6 and the cytoplasmic lattices. Dev Biol. 350(2):311–322

    Google Scholar 

  • Kilsgard O et al (2012) Peptidylarginine deiminases present in the airways during tobacco smoking and inflammation can citrullinate the host defense peptide LL-37, resulting in altered activities. Am J Respir Cell Mol Biol 46(2):240–248

    Article  PubMed  CAS  Google Scholar 

  • Knuckley B, Luo Y, Thompson PR (2008) Profiling protein arginine deiminase 4 (PAD4): a novel screen to identify PAD4 inhibitors. Bioorg Med Chem 16(2):739–745

    Article  PubMed  CAS  Google Scholar 

  • Lee YH et al (2005) Regulation of coactivator complex assembly and function by protein arginine methylation and demethylimination. Proc Natl Acad Sci U S A 102(10):3611–6

    Article  PubMed  CAS  Google Scholar 

  • Lee HJ et al (2010) Peptidylarginine deiminase 2 suppresses inhibitory kappa B kinase activity in lipopolysaccharide-stimulated RAW 264.7 macrophages. J Biol Chem 285:39655–39662

    Article  PubMed  CAS  Google Scholar 

  • Li P et al (2008) Regulation of p53 target gene expression by peptidylarginine deiminase 4. Mol Cell Biol 28(15):4745–4758

    Article  PubMed  CAS  Google Scholar 

  • Li P et al (2010) Coordination of PAD4 and HDAC2 in the regulation of p53-target gene expression. Oncogene 29(21):3153–3162

    Article  PubMed  CAS  Google Scholar 

  • Loos T et al (2008) Citrullination of CXCL10 and CXCL11 by peptidylarginine deiminase: a naturally occurring posttranslational modification of chemokines and new dimension of immunoregulation. Blood 112(7):2648–2656

    Article  PubMed  CAS  Google Scholar 

  • Luo Y et al (2006a) Inhibitors and inactivators of protein arginine deiminase 4: functional and structural characterization. Biochemistry 45(39):11727–11736

    Article  PubMed  CAS  Google Scholar 

  • Luo Y et al (2006b) Activity-based protein profiling reagents for protein arginine deiminase 4 (PAD4): synthesis and in vitro evaluation of a fluorescently labeled probe. J Am Chem Soc 128(45):14468–14469

    Article  PubMed  CAS  Google Scholar 

  • Luster AD (2002) The role of chemokines in linking innate and adaptive immunity. Curr Opin Immunol 14(1):129–135

    Article  PubMed  CAS  Google Scholar 

  • Makrygiannakis D et al (2006) Citrullination is an inflammation-dependent process. Ann Rheum Dis 65(9):1219–1222

    Article  PubMed  CAS  Google Scholar 

  • McElwee JL et al (2012) Identification of PADI2 as a potential breast cancer biomarker and therapeutic target. BMC Cancer 12(1):500

    Article  PubMed  CAS  Google Scholar 

  • Miranda EI (2010) MAGE, biological functions and potential clinical applications. Leuk Res 34(9):1121–1122

    Article  PubMed  Google Scholar 

  • Mohanan S et al (2012) Potential role of peptidylarginine deiminase enzymes and protein citrullination in cancer pathogenesis. Biochem Res Int 2012:895343

    Article  PubMed  Google Scholar 

  • Montanez-Wiscovich ME et al (2009) LMO4 is an essential mediator of ErbB2/HER2/Neu-induced breast cancer cell cycle progression. Oncogene 28(41):3608–3618

    Article  PubMed  CAS  Google Scholar 

  • Nagata S, Senshu T (1990) Peptidylarginine deiminase in rat and mouse hemopoietic cells. Experientia 46(1):72–74

    Article  PubMed  CAS  Google Scholar 

  • Nagata S et al (1992) Increased peptidylarginine deiminase expression during induction of prolactin biosynthesis in a growth-hormone-producing rat pituitary cell line, MtT/S. J Cell Physiol 150(2):426–432

    Article  PubMed  CAS  Google Scholar 

  • Nakashima K, Hagiwara T, Yamada M (2002) Nuclear localization of peptidylarginine deiminase V and histone deimination in granulocytes. J Biol Chem 277(51):49562–49568

    Article  PubMed  CAS  Google Scholar 

  • O’Brien JE et al (2006) Estrogen-induced proliferation of uterine epithelial cells is independent of estrogen receptor alpha binds to classical estrogen response elements. J Biol Chem 281(36):26683–26692

    Google Scholar 

  • Papadimitriou E et al (2009) Roles of pleiotrophin in tumor growth and angiogenesis. Eur Cytokine Netw 20(4):180–190

    PubMed  CAS  Google Scholar 

  • Perez-Pinera P, Chang Y, Deuel TF (2007) Pleiotrophin, a multifunctional tumor promoter through induction of tumor angiogenesis, remodeling of the tumor microenvironment, and activation of stromal fibroblasts. Cell Cycle 6(23):2877–2883

    Article  PubMed  CAS  Google Scholar 

  • Pierce BL et al (2009) Correlates of circulating C-reactive protein and serum amyloid A concentrations in breast cancer survivors. Breast Cancer Res Treat 114(1):155–167

    Article  PubMed  CAS  Google Scholar 

  • Prabhakar VK, Davis JR (2008) Hyperprolactinaemia. Best Pract Res Clin Obstet Gynaecol 22(2):341–353

    Article  PubMed  CAS  Google Scholar 

  • Pritzker LB et al (2000) Deimination of myelin basic protein. 2. Effect of methylation of MBP on its deimination by peptidylarginine deiminase. Biochemistry 39(18):5382–5388

    Article  PubMed  CAS  Google Scholar 

  • Proost P et al (2008) Citrullination of CXCL8 by peptidylarginine deiminase alters receptor usage, prevents proteolysis, and dampens tissue inflammation. J Exp Med 205(9):2085–2097

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Esquide V et al (2012) Anti-citrullinated peptide antibodies in the serum of heavy smokers without rheumatoid arthritis. A differential effect of chronic obstructive pulmonary disease? Clin Rheumatol 31(7):1047–1050

    Article  PubMed  Google Scholar 

  • Rus'd AA et al (1999) Molecular cloning of cDNAs of mouse peptidylarginine deiminase type I, type III and type IV, and the expression pattern of type I in mouse. Eur J Biochem 259(3):660–669

    Article  PubMed  Google Scholar 

  • Salgado R et al (2003) Circulating interleukin-6 predicts survival in patients with metastatic breast cancer. Int J Cancer 103(5):642–646

    Article  PubMed  CAS  Google Scholar 

  • Sarkar DK (2006) Genesis of prolactinomas: studies using estrogen-treated animals. Front Horm Res 35:32–49

    PubMed  CAS  Google Scholar 

  • Senshu T et al (1989) Peptidylarginine deiminase in rat pituitary: sex difference, estrous cycle-related changes, and estrogen dependence. Endocrinology 124(6):2666–2670

    Article  PubMed  CAS  Google Scholar 

  • Simpson AJ et al (2005) Cancer/testis antigens, gametogenesis and cancer. Nat Rev Cancer 5(8):615–625

    Article  PubMed  CAS  Google Scholar 

  • Slack JL, Causey CP, Thompson PR (2011) Protein arginine deiminase 4: a target for an epigenetic cancer therapy. Cell Mol Life Sci 68(4):709–720

    Article  PubMed  CAS  Google Scholar 

  • Sorensen TL et al (2002) Multiple sclerosis: a study of CXCL10 and CXCR3 co-localization in the inflamed central nervous system. J Neuroimmunol 127(1–2):59–68

    Article  PubMed  CAS  Google Scholar 

  • Stadler SC et al (2013) Epub 2013 Jul 1.Dysregulation of PAD4-mediated citrullination of nuclear GSK3β activates TGF-β signaling and induces epithelial-to-mesenchymal transition in breast cancer cells. J Neuroimmunol Jul 16;110(29):11851–6. doi: 10.1073/pnas.1308362110

    Google Scholar 

  • Takahara H et al (1989) Peptidylarginine deiminase of the mouse. Distribution, properties, and immunocytochemical localization. J Biol Chem 264(22):13361–13368

    PubMed  CAS  Google Scholar 

  • Takahara H et al (1992) Expression of peptidylarginine deiminase in the uterine epithelial cells of mouse is dependent on estrogen. J Biol Chem 267(1):520–525

    PubMed  CAS  Google Scholar 

  • Tanikawa C et al (2012) Regulation of histone modification and chromatin structure by the p53-PADI4 pathway. Nat Commun 3:676

    Article  PubMed  Google Scholar 

  • Terakawa H, Takahara H, Sugawara K (1991) Three types of mouse peptidylarginine deiminase: characterization and tissue distribution. J Biochem 110(4):661–666

    PubMed  CAS  Google Scholar 

  • Ulrich LS (2011) Endometrial cancer, types, prognosis, female hormones and antihormones. Climacteric 14(4):418–425

    Article  PubMed  CAS  Google Scholar 

  • Van Damme J et al (1988) A novel, NH2-terminal sequence-characterized human monokine possessing neutrophil chemotactic, skin-reactive, and granulocytosis-promoting activity. J Exp Med 167(4):1364

    Article  PubMed  Google Scholar 

  • Vossenaar ER et al (2004) Expression and activity of citrullinating peptidylarginine deiminase enzymes in monocytes and macrophages. Ann Rheum Dis 63(4):373–381

    Article  PubMed  CAS  Google Scholar 

  • Wang Y et al (2004) Human PAD4 regulates histone arginine methylation levels via demethylimination. Science 306(5694):279–283

    Article  PubMed  CAS  Google Scholar 

  • Wang Y et al (2009) Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J Cell Biol 184(2):205–213

    Article  PubMed  CAS  Google Scholar 

  • Wang L et al (2010) Expression of peptidylarginine deiminase type 4 in ovarian tumors. Int J Biol Sci 6(5):454–464

    Article  PubMed  CAS  Google Scholar 

  • Wang Y et al (2012) Anticancer peptidylarginine deiminase (PAD) inhibitors regulate the autophagy flux and the mammalian target of rapamycin complex 1 activity. J Biol Chem 287(31):25941–25953

    Article  PubMed  CAS  Google Scholar 

  • Watanabe K, Senshu T (1989) Isolation and characterization of cDNA clones encoding rat skeletal muscle peptidylarginine deiminase. J Biol Chem 264(26):15255–15260

    PubMed  CAS  Google Scholar 

  • Watanabe K et al (1988) Combined biochemical and immunochemical comparison of peptidylarginine deiminases present in various tissues. Biochim Biophys Acta 966(3):375–383

    Article  PubMed  CAS  Google Scholar 

  • Watanabe K et al (1990) Estrous cycle dependent regulation of peptidylarginine deiminase transcripts in female rat pituitary. Biochem Biophys Res Commun 172(1):28–34

    Article  PubMed  CAS  Google Scholar 

  • Wolf M, Albrecht S, Märki C (2008) Proteolytic processing of chemokines: implications in physiological and pathological conditions. Int J Biochem Cell Biol 40(6–7):1185–1198

    Article  PubMed  CAS  Google Scholar 

  • Wright PW et al (2003) ePAD, an oocyte and early embryo-abundant peptidylarginine deiminase-like protein that localizes to egg cytoplasmic sheets. Dev Biol 256(1):73–88

    Article  PubMed  CAS  Google Scholar 

  • Wysocka J, Allis CD, Coonrod S (2006) Histone arginine methylation and its dynamic regulation. Front Biosci 11:344–355

    Article  PubMed  CAS  Google Scholar 

  • Yao H et al (2008) Histone arg modifications and p53 regulate the expression of OKL38, a mediator of apoptosis. J Biol Chem 283(29):20060–20068

    Article  PubMed  CAS  Google Scholar 

  • Yeramian A et al (2013) Endometrial carcinoma: molecular alterations involved in tumor development and progression. Oncogene 32:403–413

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura T et al (1987) Purification of a human monocyte-derived neutrophil chemotactic factor that has peptide sequence similarity to other host defense cytokines. Proc Natl Acad Sci U S A 84(24):9233

    Article  PubMed  CAS  Google Scholar 

  • Yurttas P et al (2008) Role for PADI6 and the cytoplasmic lattices in ribosomal storage in oocytes and translational control in the early mouse embryo. Development 135(15):2627–2636

    Article  PubMed  CAS  Google Scholar 

  • Zhang X et al (2011) Genome-wide analysis reveals PADI4 cooperates with Elk-1 to activate c-Fos expression in breast cancer cells. PLoS Genet 7(6):e1002112

    Article  PubMed  CAS  Google Scholar 

  • Zhang X et al (2012) Peptidylarginine deiminase 2-catalyzed histone H3 arginine 26 citrullination facilitates estrogen receptor alpha target gene activation. Proc Natl Acad Sci U S A 109(33):13331–13336

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian D. Cherrington .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cherrington, B.D., Mohanan, S., Coonrod, S.A. (2014). PAD Enzymes in Female Reproductive Tissues and Cancer Pathogenesis. In: Nicholas, A., Bhattacharya, S. (eds) Protein Deimination in Human Health and Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8317-5_17

Download citation

Publish with us

Policies and ethics