Skip to main content

Wireless Powering for Miniature Implantable Systems

  • Chapter
  • First Online:
Neural Computation, Neural Devices, and Neural Prosthesis

Abstract

The miniaturization of electronics has paved way for implantable devices at the scale of a millimeter or less. Progress in energy storage technologies, however, has been slower and the miniaturization of the power source remains unsolved. Wireless powering provides a potential solution in which electromagnetic energy is transferred from an external source. In this chapter, we analyze powering in the weakly coupled regime and discuss a specific example for a cardiac implant. For a weakly coupled device, we show that optimal powering occurs in the mid-field where power transfer occurs though a combination of inductive and radiative modes in tissue, in contrast to conventional inductive coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This definition for efficiency is also known as the operating power gain. The reflection at the source is disregarded.

References

  1. N.N. Donaldson, T.A. Perkins, Analysis of resonant coupled coils in the design of radio frequency transcutaneous links. Med. Biol. Eng. Comput. 21(5), 612–627 (1983)

    Article  CAS  PubMed  Google Scholar 

  2. S. Gabriel, R.W. Lau, C. Gabriel, The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys. Med. Biol. 41(11), 2271–2293 (1996)

    CAS  Google Scholar 

  3. R.F. Harrington, Time-Harmonic Electromagnetic Fields (IEEE Press, New York, 2001)

    Book  Google Scholar 

  4. J.S. Ho, S. Kim, A.S.Y. Poon, Midfield Wireless Powering for Implantable Systems. Proc. IEEE 101(6), 1369–1378 (2013)

    Google Scholar 

  5. IEEE Recommended Practice for Measurements and Computations of Radio Frequency Electromagnetic Fields With Respect to Human Exposure to Such Fields, 100 kHz-300 GHz. IEEE Standard C95.3-2002, 2002

    Google Scholar 

  6. J.D. Jackson, Classical Electrodynamics, 2nd edn. (Wiley, New York, 2001)

    Google Scholar 

  7. U. Jow, M. Ghovanloo, Design and optimization of printed spiral coils for efficient transcutaneous inductive power transmission. IEEE Trans. Biomed. Circ. Syst. 1(3), 193–202 (2007)

    Article  Google Scholar 

  8. S. Kim, J.S. Ho, L.Y. Chen, A.S.Y. Poon, Wireless power transfer to a cardiac implant. Appl. Phys. Lett. 101(7), 073701 (2012)

    Google Scholar 

  9. S. Kim, J.S. Ho, A.S.Y. Poon, Wireless power transfer to miniature implants: transmitter optimization. IEEE Trans. Antennas Propag. 60(10), 4838–4845 (2012)

    Article  Google Scholar 

  10. W.H. Ko, S.P. Liang, C.D.F. Fun, Design of radio-frequency powered coils for implant instruments. Med. Biol. Eng. Comput. 15, 634–640 (1977)

    Article  CAS  PubMed  Google Scholar 

  11. A. Kurs, A. Karalis, R. Moffatt, J.D. Joannopoulos, P. Fisher, M. Soljačić, Wireless power Transfer via strongly coupled magnetic resonances. Science 317(5834), 83–86 (2007)

    Article  CAS  PubMed  Google Scholar 

  12. T. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, 2nd edn. (Cambridge University Press, Cambridge, 2004)

    Google Scholar 

  13. B. Lenaerts, R. Puers, An inductive power link for a wireless endoscope. Biosnes. Bioelectron. 22, 1390–1395 (2007)

    Article  CAS  Google Scholar 

  14. E.E. Orlova, J.N. Hovenier, T.O. Klaassen, I. Kašalynas, A.J.L. Adam, J.R. Gao, T.M. Klapwijk, B.S. Williams, S. Kumar, Q. Hu, J.L Reno, Antenna model for wire lasers. Phys. Rev. Lett. 96(17), 173904 (2006)

    Google Scholar 

  15. D.M. Pozar, Microwave Engineering (Wiley, New York, 2009)

    Google Scholar 

  16. A.K. RamRakhyani, S. Mirabbasi, Mu Chiao, Design and optimization of resonance-based efficient wireless power delivery systems for biomedical implants. IEEE Trans. Biomed. Circ. Syst. 5(1), 48–63 (2011)

    CAS  Google Scholar 

  17. B.I. Rapoport, J.T. Kedzierski, R. Sarpeshkar (2012) A glucose fuel cell for implantable brain–machine interfaces. PloS One 7(6), e38436 (2012)

    Google Scholar 

  18. E. Romero, R.O. Warrington, M.R. Neuman, Energy scavenging sources for biomedical sensors. Physiol. Meas. 30(9), R35–R62 (2009)

    Article  CAS  PubMed  Google Scholar 

  19. L.S.Y. Wong, S. Hossain, A. Ta, J. Edvinsson, D.H. Rivas, H. Naas, A very low-power cmos mixed-signal ic for implantable pacemaker applications. IEEE J. Solid State Circ. 39(12), 2446–2456 (2004)

    Article  Google Scholar 

  20. G. Zubal, C.R. Harrell, E.O. Smith, Z. Rattner, G. Gindi, P.B. Hoffer, Computerized three-dimensional segmented human anatomy. Med. Phys. 21(2), 299–302 (1994)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ada S. Y. Poon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ho, J.S., Yeh, A.J., Kim, S., Poon, A.S.Y. (2014). Wireless Powering for Miniature Implantable Systems. In: Yang, Z. (eds) Neural Computation, Neural Devices, and Neural Prosthesis. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8151-5_13

Download citation

Publish with us

Policies and ethics