Skip to main content

Identification of Chromatin-Binding Protein Complexes

  • Chapter
  • First Online:
Systems Analysis of Chromatin-Related Protein Complexes in Cancer

Abstract

Cellular localization and activity of most proteins are highly dependent on the formation of complexes with other proteins and/or other biomolecules. Moreover, protein–protein interactions and the nature of the complexes formed are modulated in cell differentiation, de-differentiation, and carcinogenesis. Therefore, identification of protein interactors is essential to the understanding of protein biological activity in given cell states. Formation of DNA-binding complexes implicating proteins such as DNA repair enzymes, DNA- and histone-modifying enzymes, transcription factors, and gene activators, repressors, and silencers greatly affect DNA integrity and gene expression associated with multiple processes including cellular division and cancer development and progression. Protein–protein interaction mapping proved to be particularly difficult for chromatin-bound protein complexes due to the insolubility of these high molecular weight biomolecule assemblies. Recently, DNA-based methods were developed to isolate DNA-bound protein complexes formed at a specific locus. Techniques were also developed to purify the breath of proteins associated with a particular protein target using modified chromatin immunoprecipitation. The isolated proteins are then identified by tandem mass spectrometry and protein complexes are represented using dedicated softwares. In this chapter, we present the recently developed methods allowing for the isolation and identification of chromatin-bound protein complexes and to assign biological functions to these biomolecule. We also discuss the future challenges in the field of chromatin-bound protein interactor isolation and identification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CENPA:

Centromer protein A

ChAP-MS:

Chromatin affinity purification with mass spectrometry

CTCF:

CCCTC-binding factor

E-MAP:

Epistasis mini-array profile

GENECAPP:

Global exonuclease-based enrichment of chromatin-associated proteins for proteomics

H3K4me3:

Histone H3 lysine 4 (K4) tri-methylation (me3)

HJURP:

Holliday junction recognition protein

HSP90:

Heat shock protein 90

Kog1p:

Kontrol of growth protein

Lge1p:

Depletion of large cell 1

MChIP:

Modified chromatin immunoprecipitation

NPM1:

Nnucleophosmin1

PICh:

Proteomics of isolated chromatin segment

SMYD2:

SET and MYND-containing protein 2.

References

  1. Gavin A-C, Maeda K, Kühner S. Recent advances in charting protein-protein interaction: mass spectrometry-based approaches. Curr Opin Biotechnol. 2011;22(1):42–9.

    Article  PubMed  CAS  Google Scholar 

  2. Gstaiger M, Aebersold R. Applying mass spectrometry-based proteomics to genetics, genomics and network biology. Nat Rev Genet. 2009;10(9):617–27.

    Article  PubMed  CAS  Google Scholar 

  3. Gingras A-C, Gstaiger M, Raught B, Aebersold R. Analysis of protein complexes using mass spectrometry. Nat Rev Mol Cell Biol. 2007;8(8):645–54.

    Article  PubMed  CAS  Google Scholar 

  4. Krogan NJ, Cagney G, Yu H, Zhong G, Guo X, Ignatchenko A, et al. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature. 2006;440(7084):637–43.

    Article  PubMed  CAS  Google Scholar 

  5. Gavin A-C, Aloy P, Grandi P, Krause R, Boesche M, Marzioch M, et al. Proteome survey reveals modularity of the yeast cell machinery. Nature. 2006;440(7084):631–6.

    Article  PubMed  CAS  Google Scholar 

  6. Ho Y, Gruhler A, Heilbut A, Bader GD, Moore L, Adams S, et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature. 2002;415:2–5.

    Article  Google Scholar 

  7. Ewing RM, Chu P, Elisma F, Li H, Taylor P, Climie S, et al. Large-scale mapping of human protein-protein interactions by mass spectrometry. Mol Syst Biol. 2007;3(89):89.

    PubMed  Google Scholar 

  8. Hu P, Janga SC, Babu M, Díaz-Mejía JJ, Butland G, Yang W, et al. Global functional atlas of Escherichia coli encompassing previously uncharacterized proteins. PLoS Biol. 2009;7(4):e96.

    Article  PubMed  Google Scholar 

  9. Kühner S, van Noort V, Betts MJ, Leo-Macias A, Batisse C, Rode M, et al. Proteome organization in a genome-reduced bacterium. Science. 2009;326(5957):1235–40.

    Article  PubMed  Google Scholar 

  10. Khorasanizadeh S. The nucleosome: from genomic organization to genomic regulation. Cell. 2004;116:259–72.

    Article  PubMed  CAS  Google Scholar 

  11. Abu-Farha M, Lambert J-P, Al-Madhoun AS, Elisma F, Skerjanc IS, Figeys D. The tale of two domains: proteomics and genomics analysis of SMYD2, a new histone methyltransferase. Mol Cell Proteomics. 2008;7(3):560–72.

    PubMed  CAS  Google Scholar 

  12. Abu-Farha M, Lanouette S, Elisma F, Tremblay V, Butson J, Figeys D, et al. Proteomic analyses of the SMYD family interactomes identify HSP90 as a novel target for SMYD2. J Mol Cell Biol. 2011;3(5):301–8.

    Article  PubMed  CAS  Google Scholar 

  13. Galasinski S. Protein mass analysis of histones. Methods. 2003;31(1):3–11.

    Article  PubMed  CAS  Google Scholar 

  14. Shechter D, Dormann HL, Allis CD, Hake SB. Extraction, purification and analysis of histones. Nat Protoc. 2007;2(6):1445–57.

    Article  PubMed  CAS  Google Scholar 

  15. Kadonaga JT, Tjian R. Affinity purification of sequence-specific DNA binding proteins. Proc Natl Acad Sci USA. 1986;83(16):5889–93.

    Article  PubMed  CAS  Google Scholar 

  16. Rubio ED, Reiss DJ, Welcsh PL, Disteche CM, Filippova GN, Baliga NS, et al. CTCF physically links cohesin to chromatin. Proc Natl Acad Sci USA. 2008;105(24):8309–14.

    Article  PubMed  CAS  Google Scholar 

  17. Schultz-norton JR, Ziegler YS, Likhite VS, Yates JR, Nardulli AM. Isolation of novel coregulatory protein networks associated with DNA-bound estrogen receptor alpha. BMC Mol Biol. 2008;12:1–12.

    Google Scholar 

  18. Nikolov M, Stützer A, Mosch K, Krasauskas A, Soeroes S, Stark H, et al. Chromatin affinity purification and quantitative mass spectrometry defining the interactome of histone modification patterns. Mol Cell Proteomics. 2011;10(11):M110.005371.

    Article  PubMed  Google Scholar 

  19. Déjardin J, Kingston RE. Purification of proteins associated with specific genomic Loci. Cell. 2009;136(1):175–86.

    Article  PubMed  Google Scholar 

  20. Wu C, Chen S, Shortreed MR, Kreitinger GM, Yuan Y, Brian L, et al. Sequence-specific capture of protein-DNA complexes for mass spectrometric protein identification. PLoS One. 2011;6(10):e26217.

    Article  PubMed  CAS  Google Scholar 

  21. Takeuchi K, Fukagawa T. Molecular architecture of vertebrate kinetochores. Exp Cell Res. 2012;318(12):1367–74.

    Article  PubMed  CAS  Google Scholar 

  22. Gascoigne KE, Cheeseman IM. Kinetochore assembly: If you build it, they will come. Curr Opin Cell Biol. 2012;23(1):102–8.

    Article  Google Scholar 

  23. Ma HT, Poon RYC. How protein kinases co-ordinate mitosis in animal cells. Biochem J. 2011;435(1):17–31.

    Article  PubMed  CAS  Google Scholar 

  24. Akiyoshi B, Nelson CR, Ranish JA, Biggins S. Quantitative proteomic analysis of purified yeast kinetochores identifies a PP1 regulatory subunit. Genes Dev. 2009;23(24):2887–99.

    Article  PubMed  CAS  Google Scholar 

  25. Woodbury EL, Morgan DO. Cdk and APC activities limit the spindle-stabilizing function of Fin1 to anaphase. Nat Cell Biol. 2007;9(1):106–12.

    Article  PubMed  CAS  Google Scholar 

  26. van Hemert MJ, Deelder AM, Molenaar C, Steensma HY, van Heusden GPH. Self-association of the spindle pole body-related intermediate filament protein Fin1p and its phosphorylation-dependent interaction with 14-3-3 proteins in yeast. J Biol Chem. 2003;278(17):15049–55.

    Article  PubMed  Google Scholar 

  27. Sullivan BA, Blower MD, Karpen GH. Determining centromere identity: cyclical stories and forking paths. Nat Rev Genet. 2001;2(8):584–96.

    Article  PubMed  CAS  Google Scholar 

  28. Cleveland DW, Mao Y, Sullivan KF. Centromeres and kinetochores: from epigenetics to mitotic checkpoint signaling. Cell. 2003;112(4):407–21.

    Article  PubMed  CAS  Google Scholar 

  29. Foltz DR, Jansen LET, Black BE, Bailey AO, Yates JR, Cleveland DW. The human CENP-A centromeric nucleosome-associated complex. Nat Cell Biol. 2006;8(5):458–69.

    Article  PubMed  CAS  Google Scholar 

  30. Foltz DR, Jansen LET, Bailey AO, Iii JRY, Emily A, Wood S, et al. Centromere specific assembly of CENP-A nucleosomes is mediated by HJURP. Cell. 2010;137(3):472–84.

    Article  Google Scholar 

  31. Lambert J-P, Mitchell L, Rudner A, Baetz K, Figeys D. A novel proteomics approach for the discovery of chromatin-associated protein networks. Mol Cell Proteomics. 2009;8(4):870–82.

    Article  PubMed  CAS  Google Scholar 

  32. Stark C, Breitkreutz B-J, Chatr-Aryamontri A, Boucher L, Oughtred R, Livstone MS, et al. The BioGRID Interaction Database: 2011 update. Nucleic Acids Res. 2011;39((Database issue)):D698–704.

    Article  PubMed  CAS  Google Scholar 

  33. Mitchell L, Lambert J-P, Gerdes M, Al-Madhoun AS, Skerjanc IS, Figeys D, et al. Functional dissection of the NuA4 histone acetyltransferase reveals its role as a genetic hub and that Eaf1 is essential for complex integrity. Mol Cell Biol. 2008;28(7):2244–56.

    Article  PubMed  CAS  Google Scholar 

  34. Lambert J-P, Fillingham J, Siahbazi M, Greenblatt J, Baetz K, Figeys D. Defining the budding yeast chromatin-associated interactome. Mol Syst Biol. 2010;6(448):448.

    PubMed  CAS  Google Scholar 

  35. Butala M, Busby SJW, Lee DJ. DNA sampling: a method for probing protein binding at specific loci on bacterial chromosomes. Nucleic Acids Res. 2009;37(5):e37.

    Article  PubMed  Google Scholar 

  36. Byrum SD, Raman A, Taverna SD, Tackett AJ. ChAP-MS: a method for identification of proteins and histone posttranslational modifications at a single genomic locus. Cell Rep. 2012;2(1):198–205.

    Article  PubMed  CAS  Google Scholar 

  37. Fujita T, Fujii H. Direct identification of insulator components by insertional chromatin immunoprecipitation. PLoS One. 2011;6(10):e26109.

    Article  PubMed  CAS  Google Scholar 

  38. Collins SR, Miller KM, Maas NL, Roguev A, Fillingham J, Chu CS, et al. Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. Nature. 2007;446(7137):806–10.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

D.F. Acknowledges a Canada Research Chair in Proteomics and Systems Biology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Figeys Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Doucet, A., Figeys, D. (2014). Identification of Chromatin-Binding Protein Complexes. In: Emili, A., Greenblatt, J., Wodak, S. (eds) Systems Analysis of Chromatin-Related Protein Complexes in Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7931-4_6

Download citation

Publish with us

Policies and ethics