Skip to main content

CD1d and Natural Killer T Cells in Immunity to Mycobacterium tuberculosis

  • Chapter
  • First Online:
The New Paradigm of Immunity to Tuberculosis

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 783))

Abstract

The critical role of peptide antigen-specific T cells in controlling mycobacterial infections is well documented in natural resistance and vaccine-induced immunity against Mycobacterium tuberculosis. However, many other populations of leukocytes contribute to innate and adaptive immunity against mycobacteria. Among these, non-conventional T cells recognizing lipid antigens presented by the CD1 antigen presentation system have attracted particular interest. In this chapter, we review the basic immunobiology and potential antimycobacterial properties of a subset of CD1-restricted T cells that have come to be known as Natural Killer T cells. This group of lipid reactive T cells is notable for its high level of conservation between humans and mice, thus enabling a wide range of highly informative studies in mouse models. As reviewed below, NKT cells appear to have subtle but potentially significant activities in the host response to mycobacteria. Importantly, they also provide a framework for investigations into other types of lipid antigen-specific T cells that may be more abundant in larger mammals such as humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McMichael AJ, Pilch JR, Galfre G, Mason DY, Fabre JW, Milstein C (1979) A human thymocyte antigen defined by a hybrid myeloma monoclonal antibody. Eur J Immunol 9(3):205–210. doi:10.1002/eji.1830090307

    Article  PubMed  CAS  Google Scholar 

  2. Calabi F, Milstein C (1986) A novel family of human major histocompatibility complex-related genes not mapping to chromosome 6. Nature 323(6088):540–543. doi:10.1038/323540a0

    Article  PubMed  CAS  Google Scholar 

  3. Martin LH, Calabi F, Milstein C (1986) Isolation of CD1 genes: a family of major histocompatibility complex-related differentiation antigens. Proc Natl Acad Sci U S A 83(23):9154–9158

    Article  PubMed  CAS  Google Scholar 

  4. Calabi F, Jarvis JM, Martin L, Milstein C (1989) Two classes of CD1 genes. Eur J Immunol 19(2):285–292. doi:10.1002/eji.1830190211

    Article  PubMed  CAS  Google Scholar 

  5. Balk SP, Bleicher PA, Terhorst C (1991) Isolation and expression of cDNA encoding the murine homologues of CD1. J Immunol 146(2):768–774

    PubMed  CAS  Google Scholar 

  6. Bendelac A (1995) CD1 recognition by mouse NK1+ T lymphocytes. Science 268:863–865

    Article  PubMed  CAS  Google Scholar 

  7. Mendiratta SK, Martin WD, Hong S, Boesteanu A, Joyce S, Van Kaer L (1997) CD1d1 mutant mice are deficient in natural T cells that promptly produce IL-4. Immunity 6(4):469–477

    Article  PubMed  CAS  Google Scholar 

  8. Jayawardena-Wolf J, Benlagha K, Chiu YH, Mehr R, Bendelac A (2001) CD1d endosomal trafficking is independently regulated by an intrinsic CD1d-encoded tyrosine motif and by the invariant chain. Immunity 15:897–908

    Article  PubMed  CAS  Google Scholar 

  9. Nakagawa TY (1999) Impaired invariant chain degradation and antigen presentation and diminished collagen-induced arthritis in cathepsin S null mice. Immunity 10:207–217

    Article  PubMed  CAS  Google Scholar 

  10. Sugita M,Cao X,Watts GF,Rogers RA,Bonifacino JS,Brenner MB (2002) Failure of trafficking and antigen presentation by CD1 in AP-3-deficient cells. Immunity 16(5):697–706. doi:S1074761302003114 [pii]

    Google Scholar 

  11. Cernadas M, Sugita M, van der Wel N, Cao X, Gumperz JE, Maltsev S, Besra GS, Behar SM, Peters PJ, Brenner MB (2003) Lysosomal localization of murine CD1d mediated by AP-3 is necessary for NK T cell development. J Immunol 171(8):4149–4155

    PubMed  CAS  Google Scholar 

  12. Lawton AP,Prigozy TI,Brossay L,Pei B,Khurana A,Martin D,Zhu T,Spate K, Ozga M, Honing S, Bakke O, Kronenberg M (2005) The mouse CD1d cytoplasmic tail mediates CD1d trafficking and antigen presentation by adaptor protein 3-dependent and -independent mechanisms. J Immunol 174(6):3179–3186. doi:174/6/3179 [pii]

    Google Scholar 

  13. Brossay L, Jullien D, Cardell S, Sydora BC, Burdin N, Modlin RL, Kronenberg M (1997) Mouse CD1 is mainly expressed on hemopoietic-derived cells. J Immunol 159(3):1216–1224

    PubMed  CAS  Google Scholar 

  14. Roark JH, Park SH, Jayawardena J, Kavita U, Shannon M, Bendelac A (1998) CD1.1 expression by mouse antigen-presenting cells and marginal zone B cells. J Immunol 160(7):3121–3127

    PubMed  CAS  Google Scholar 

  15. Forestier C, Park SH, Wei D, Benlagha K, Teyton L, Bendelac A (2003) T cell development in mice expressing CD1d directed by a classical MHC class II promoter. J Immunol 171(8):4096–4104

    PubMed  CAS  Google Scholar 

  16. Schumann J,Pittoni P,Tonti E,Macdonald HR,Dellabona P,Casorati G (2005) Targeted expression of human CD1d in transgenic mice reveals independent roles for thymocytes and thymic APCs in positive and negative selection of Valpha14i NKT cells. J Immunol 175(11):7303–7310. doi:175/11/7303 [pii]

    Google Scholar 

  17. Bonish B, Jullien D, Dutronc Y, Huang BB, Modlin R, Spada FM, Porcelli SA, Nickoloff BJ (2000) Overexpression of CD1d by keratinocytes in psoriasis and CD1d-dependent IFN-gamma production by NK-T cells. J Immunol 165(7):4076–4085

    PubMed  CAS  Google Scholar 

  18. Salamone MC, Rabinovich GA, Mendiguren AK, Salamone GV, Fainboim L (2001) Activation-induced expression of CD1d antigen on mature T cells. J Leukoc Biol 69(2):207–214

    PubMed  CAS  Google Scholar 

  19. Colgan SP, Pitman RS, Nagaishi T, Mizoguchi A, Mizoguchi E, Mayer LF, Shao L, Sartor RB, Subjeck JR, Blumberg RS (2003) Intestinal heat shock protein 110 regulates expression of CD1d on intestinal epithelial cells. J Clin Invest 112(5):745–754. doi:10.1172/JCI17241

    PubMed  CAS  Google Scholar 

  20. Sanchez DJ, Gumperz JE, Ganem D (2005) Regulation of CD1d expression and function by a herpesvirus infection. J Clin Invest 115(5):1369–1378. doi:10.1172/JCI24041

    PubMed  CAS  Google Scholar 

  21. Lin Y, Roberts TJ, Spence PM, Brutkiewicz RR (2005) Reduction in CD1d expression on dendritic cells and macrophages by an acute virus infection. J Leukoc Biol 77(2):151–158. doi:10.1189/jlb.0704399

    Article  PubMed  CAS  Google Scholar 

  22. Yuan W, Dasgupta A, Cresswell P (2006) Herpes simplex virus evades natural killer T cell recognition by suppressing CD1d recycling. Nat Immunol 7:835–842

    Article  PubMed  CAS  Google Scholar 

  23. Berntman E, Rolf J, Johansson C, Anderson P, Cardell SL (2005) The role of CD1d-restricted NK T lymphocytes in the immune response to oral infection with Salmonella typhimurium. Eur J Immunol 35(7):2100–2109. doi:10.1002/eji.200425846

    Article  PubMed  CAS  Google Scholar 

  24. Skold M, Xiong X, Illarionov PA, Besra GS, Behar SM (2005) Interplay of cytokines and microbial signals in regulation of CD1d expression and NKT cell activation. J Immunol 175(6):3584–3593

    PubMed  Google Scholar 

  25. Raghuraman G, Geng Y, Wang CR (2006) IFN-beta-mediated up-regulation of CD1d in bacteria-infected APCs. J Immunol 177(11):7841–7848

    PubMed  CAS  Google Scholar 

  26. Arrunategui-Correa V, Lenz L, Kim HS (2004) CD1d-independent regulation of NKT cell migration and cytokine production upon Listeria monocytogenes infection. Cell Immunol 232(1–2):38–48. doi:10.1016/j.cellimm.2005.01.009

    Article  PubMed  CAS  Google Scholar 

  27. Im JS, Arora P, Bricard G, Molano A, Venkataswamy MM, Baine I, Jerud ES, Goldberg MF, Baena A, Yu KO, Ndonye RM, Howell AR, Yuan W, Cresswell P, Chang YT, Illarionov PA, Besra GS, Porcelli SA (2009) Kinetics and cellular site of glycolipid loading control the outcome of natural killer T cell activation. Immunity 30(6):888–898. doi:S1074-7613(09)00238-6 [pii] 10.1016/j.immuni.2009.03.022

    Google Scholar 

  28. Zhou D (2004) Editing of CD1d-bound lipid antigens by endosomal lipid transfer proteins. Science 303:523–527

    Article  PubMed  CAS  Google Scholar 

  29. Allan LL, Hoefl K, Zheng DJ, Chung BK, Kozak FK, Tan R, van den Elzen P (2009) Apolipoprotein-mediated lipid antigen presentation in B cells provides a pathway for innate help by NKT cells. Blood 114(12):2411–2416. doi:10.1182/blood-2009-04-211417

    Article  PubMed  CAS  Google Scholar 

  30. van den Elzen P, Garg S, Leon L, Brigl M, Leadbetter EA, Gumperz JE, Dascher CC, Cheng TY, Sacks FM, Illarionov PA, Besra GS, Kent SC, Moody DB, Brenner MB (2005) Apolipoprotein-mediated pathways of lipid antigen presentation. Nature 437(7060):906–910. doi:10.1038/nature04001

    Article  PubMed  CAS  Google Scholar 

  31. Kang SJ, Cresswell P (2004) Saposins facilitate CD1d-restricted presentation of an exogenous lipid antigen to T cells. Nat Immunol 5:175–181

    Article  PubMed  CAS  Google Scholar 

  32. Zhou D (2004) Lysosomal glycosphingolipid recognition by NKT cells. Science 306:1786–1789

    Article  PubMed  CAS  Google Scholar 

  33. Yuan W (2007) Saposin B is the dominant saposin that facilitates lipid binding to human CD1d molecules. Proc Natl Acad Sci U S A 104:5551–5556

    Article  PubMed  CAS  Google Scholar 

  34. Brozovic S (2004) CD1d function is regulated by microsomal triglyceride transfer protein. Nat Med 10:535–539

    Article  PubMed  CAS  Google Scholar 

  35. Dougan SK, Salas A, Rava P, Agyemang A, Kaser A, Morrison J, Khurana A, Kronenberg M, Johnson C, Exley M, Hussain MM, Blumberg RS (2005) Microsomal triglyceride transfer protein lipidation and control of CD1d on antigen-presenting cells. J Exp Med 202(4):529–539. doi:10.1084/jem.20050183

    Article  PubMed  CAS  Google Scholar 

  36. Schrantz N, Sagiv Y, Liu Y, Savage PB, Bendelac A, Teyton L (2007) The Niemann-Pick type C2 protein loads isoglobotrihexosylceramide onto CD1d molecules and contributes to the thymic selection of NKT cells. J Exp Med 204(4):841–852. doi:10.1084/jem.20061562

    Article  PubMed  CAS  Google Scholar 

  37. Freigang S, Zadorozhny V, McKinney MK, Krebs P, Herro R, Pawlak J, Kain L, Schrantz N, Masuda K, Liu Y, Savage PB, Bendelac A, Cravatt BF, Teyton L (2010) Fatty acid amide hydrolase shapes NKT cell responses by influencing the serum transport of lipid antigen in mice. J Clin Invest 120(6):1873–1884. doi:10.1172/JCI40451

    Article  PubMed  CAS  Google Scholar 

  38. Ballas ZK, Rasmussen W (1990) Nk1.1+ thymocytes—adult murine Cd4-Cd8-thymocytes contain an Nk1.1+, Cd3+, Cd5hi, Cd44hi, Tcr-V-Beta-8+ subset. J Immunol 145(4):1039–1045

    PubMed  CAS  Google Scholar 

  39. Lanier LL, Le AM, Civin CI, Loken MR, Phillips JH (1986) The relationship of CD16 (Leu-11) and Leu-19 (NKH-1) antigen expression on human peripheral blood NK cells and cytotoxic T lymphocytes. J Immunol 136(12):4480–4486

    PubMed  CAS  Google Scholar 

  40. Exley M, Garcia J, Balk SP, Porcelli S (1997) Requirements for CD1d recognition by human invariant Valpha24+ CD4-CD8-T cells. J Exp Med 186(1):109–120

    Article  PubMed  CAS  Google Scholar 

  41. Yankelevich B, Knobloch C, Nowicki M, Dennert G (1989) A novel cell type responsible for marrow graft-rejection in mice—T-cells with Nk phenotype cause acute rejection of marrow grafts. J Immunol 142(10):3423–3430

    PubMed  CAS  Google Scholar 

  42. Koseki H, Asano H, Inaba T, Miyashita N, Moriwaki K, Lindahl KF, Mizutani Y, Imai K, Taniguchi M (1991) Dominant expression of a distinctive V14+ T-cell antigen receptor alpha chain in mice. Proc Natl Acad Sci U S A 88(17):7518–7522

    Article  PubMed  CAS  Google Scholar 

  43. Lantz O, Bendelac A (1994) An invariant T cell receptor alpha chain is used by a unique subset of major histocompatibility complex class I-specific CD4+ and CD4-8-T cells in mice and humans. J Exp Med 180(3):1097–1106

    Article  PubMed  CAS  Google Scholar 

  44. Porcelli S, Yockey CE, Brenner MB, Balk SP (1993) Analysis of T cell antigen receptor (TCR) expression by human peripheral blood CD4-8-alpha/beta T cells demonstrates preferential use of several V beta genes and an invariant TCR alpha chain. J Exp Med 178(1):1–16

    Article  PubMed  CAS  Google Scholar 

  45. Arase H, Arase N, Ogasawara K, Good RA, Onoe K (1992) An NK1.1+ CD4+ 8-single-positive thymocyte subpopulation that expresses a highly skewed T-cell antigen receptor V beta family. Proc Natl Acad Sci U S A 89(14):6506–6510

    Google Scholar 

  46. Hayakawa K, Lin BT, Hardy RR (1992) Murine thymic CD4+ T cell subsets: a subset (Thy0) that secretes diverse cytokines and overexpresses the V beta 8 T cell receptor gene family. J Exp Med 176(1):269–274

    Article  PubMed  CAS  Google Scholar 

  47. Dellabona P, Padovan E, Casorati G, Brockhaus M, Lanzavecchia A (1994) An invariant V alpha 24-J alpha Q/V beta 11 T cell receptor is expressed in all individuals by clonally expanded CD4-8-T cells. J Exp Med 180(3):1171–1176

    Article  PubMed  CAS  Google Scholar 

  48. Porcelli S, Gerdes D, Fertig AM, Balk SP (1996) Human T cells expressing an invariant V alpha 24-J alpha Q TCR alpha are CD4- and heterogeneous with respect to TCR beta expression. Hum Immunol 48(1–2):63–67

    Article  PubMed  CAS  Google Scholar 

  49. Cui J, Shin T, Kawano T, Sato H, Kondo E, Toura I, Kaneko Y, Koseki H, Kanno M, Taniguchi M (1997) Requirement for Valpha14 NKT cells in IL-12-mediated rejection of tumors. Science 278(5343):1623–1626

    Article  PubMed  CAS  Google Scholar 

  50. Uldrich AP, Patel O, Cameron G, Pellicci DG, Day EB, Sullivan LC, Kyparissoudis K, Kjer-Nielsen L, Vivian JP, Cao B, Brooks AG, Williams SJ, Illarionov P, Besra GS, Turner SJ, Porcelli SA, McCluskey J, Smyth MJ, Rossjohn J, Godfrey DI (2011) A semi-invariant Valpha10+ T cell antigen receptor defines a population of natural killer T cells with distinct glycolipid antigen-recognition properties. Nat Immunol 12(7):616–623. doi:10.1038/ni.2051

    Article  PubMed  CAS  Google Scholar 

  51. Bendelac A, Lantz O, Quimby ME, Yewdell JW, Bennink JR, Brutkiewicz RR (1995) CD1 recognition by mouse NK1+ T lymphocytes. Science 268(5212):863–865

    Article  PubMed  CAS  Google Scholar 

  52. Kinjo Y, Wu D, Kim G, Xing GW, Poles MA, Ho DD, Tsuji M, Kawahara K, Wong CH, Kronenberg M (2005) Recognition of bacterial glycosphingolipids by natural killer T cells. Nature 434(7032):520–525. doi:10.1038/nature03407

    Article  PubMed  CAS  Google Scholar 

  53. Mattner J (2005) Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature 434:525–529

    Article  PubMed  CAS  Google Scholar 

  54. Kinjo Y, Tupin E, Wu D, Fujio M, Garcia-Navarro R, Benhnia MR, Zajonc DM, Ben-Menachem G, Ainge GD, Painter GF, Khurana A, Hoebe K, Behar SM, Beutler B, Wilson IA, Tsuji M, Sellati TJ, Wong CH, Kronenberg M (2006) Natural killer T cells recognize diacylglycerol antigens from pathogenic bacteria. Nat Immunol 7(9):978–986. doi:10.1038/ni1380

    Article  PubMed  CAS  Google Scholar 

  55. Godfrey DI, Stankovic S, Baxter AG (2010) Raising the NKT cell family. Nat Immunol 11(3):197–206. doi:10.1038/ni.1841

    Article  PubMed  CAS  Google Scholar 

  56. Chen YH, Chiu NM, Mandal M, Wang N, Wang CR (1997) Impaired NK1+ T cell development and early IL-4 production in CD1-deficient mice. Immunity 6(4):459–467. doi:S1074-7613(00)80289-7 [pii]

    Google Scholar 

  57. Eberl G, Lees R, Smiley ST, Taniguchi M, Grusby MJ, MacDonald HR (1999) Tissue-specific segregation of CD1d-dependent and CD1d-independent NK T cells. J Immunol 162(11):6410–6419

    PubMed  CAS  Google Scholar 

  58. Benlagha K, Wei DG, Veiga J, Teyton L, Bendelac A (2005) Characterization of the early stages of thymic NKT cell development. J Exp Med 202(4):485–492. doi:jem.20050456 [pii] 10.1084/jem.20050456

    Google Scholar 

  59. Griewank K, Borowski C, Rietdijk S, Wang N, Julien A, Wei DG, Mamchak AA, Terhorst C, Bendelac A (2007) Homotypic interactions mediated by Slamf1 and Slamf6 receptors control NKT cell lineage development. Immunity 27(5):751–762. doi:S1074-7613(07)00493-1 [pii] 10.1016/j.immuni.2007.08.020

    Google Scholar 

  60. Dao T, Guo D, Ploss A, Stolzer A, Saylor C, Boursalian TE, Im JS, Sant’Angelo DB (2004) Development of CD1d-restricted NKT cells in the mouse thymus. Eur J Immunol 34(12):3542–3552. doi:10.1002/eji.200425546

    Article  PubMed  CAS  Google Scholar 

  61. Eidson M, Wahlstrom J, Beaulieu AM, Zaidi B, Carsons SE, Crow PK, Yuan J, Wolchok JD, Horsthemke B, Wieczorek D, Sant’Angelo DB (2011) Altered development of NKT cells, gammadelta T cells, CD8 T cells and NK cells in a PLZF deficient patient. PLoS ONE 6(9):e24441. doi:10.1371/journal.pone.0024441

    Article  PubMed  CAS  Google Scholar 

  62. Savage AK, Constantinides MG, Han J, Picard D, Martin E, Li B, Lantz O, Bendelac A (2008) The transcription factor PLZF directs the effector program of the NKT cell lineage. Immunity 29(3):391–403. doi:10.1016/j.immuni.2008.07.011

    Article  PubMed  CAS  Google Scholar 

  63. Engel I, Hammond K, Sullivan BA, He X, Taniuchi I, Kappes D, Kronenberg M (2010) Co-receptor choice by V alpha14i NKT cells is driven by Th-POK expression rather than avoidance of CD8-mediated negative selection. J Exp Med 207(5):1015–1029. doi:10.1084/jem.20090557

    Article  PubMed  CAS  Google Scholar 

  64. Ohteki T, MacDonald HR (1994) Major histocompatibility complex class I related molecules control the development of CD4+ 8- and CD4-8-subsets of natural killer 1.1+ T cell receptor-alpha/beta+ cells in the liver of mice. J Exp Med 180(2):699–704

    Article  PubMed  CAS  Google Scholar 

  65. Hammond KJ, Pelikan SB, Crowe NY, Randle-Barrett E, Nakayama T, Taniguchi M, Smyth MJ, van Driel IR, Scollay R, Baxter AG, Godfrey DI (1999) NKT cells are phenotypically and functionally diverse. Eur J Immunol 29(11):3768–3781. doi: 10.1002/(SICI)1521-4141(199911)29:11<3768::AID-IMMU3768>3.0.CO;2-G, 10.1002/(SICI)1521-4141(199911)29:11<3768::AID-IMMU3768>3.0.CO;2-G [pii]

    Google Scholar 

  66. Sykes M (1990) Unusual T cell populations in adult murine bone marrow. Prevalence of CD3 + CD4-CD8- and alpha beta TCR + NK1.1+ cells. J Immunol 145(10):3209–3215

    PubMed  CAS  Google Scholar 

  67. Bienemann K, Iouannidou K, Schoenberg K, Krux F, Reuther S, Feyen O, Schuster F, Uhrberg M, Laws HJ, Borkhardt A (2011) iNKT cell frequency in peripheral blood of Caucasian children and adolescent: the absolute iNKT cell count is stable from birth to adulthood. Scand J Immunol 74(4):406–411. doi:10.1111/j.1365-3083.2011.02591.x

    Article  PubMed  CAS  Google Scholar 

  68. Fereidouni M, Farid Hosseini R, Jabbari Azad F, Schenkel J, Varasteh A, Mahmoudi M (2010) Frequency of circulating iNKT cells among Iranian healthy adults. Cytom B Clin Cytom 78(1):65–69. doi:10.1002/cyto.b.20489

    Google Scholar 

  69. Peralbo E, DelaRosa O, Gayoso I, Pita ML, Tarazona R, Solana R (2006) Decreased frequency and proliferative response of invariant Valpha24Vbeta11 natural killer T (iNKT) cells in healthy elderly. Biogerontology 7(5–6):483–492. doi:10.1007/s10522-006-9063-5

    Article  PubMed  CAS  Google Scholar 

  70. Geissmann F, Cameron TO, Sidobre S, Manlongat N, Kronenberg M, Briskin MJ, Dustin ML, Littman DR (2005) Intravascular immune surveillance by CXCR6+ NKT cells patrolling liver sinusoids. PLoS Biol 3(4):e113. doi:10.1371/journal.pbio.0030113

    Article  PubMed  CAS  Google Scholar 

  71. Syn WK, Oo YH, Pereira TA, Karaca GF, Jung Y, Omenetti A, Witek RP, Choi SS, Guy CD, Fearing CM, Teaberry V, Pereira FE, Adams DH, Diehl AM (2010) Accumulation of natural killer T cells in progressive nonalcoholic fatty liver disease. Hepatology 51(6):1998–2007. doi:10.1002/hep.23599

    Article  PubMed  CAS  Google Scholar 

  72. Kenna T, Golden-Mason L, Porcelli SA, Koezuka Y, Hegarty JE, O’Farrelly C, Doherty DG (2003) NKT cells from normal and tumor-bearing human livers are phenotypically and functionally distinct from murine NKT cells. J Immunol 171(4):1775–1779

    PubMed  CAS  Google Scholar 

  73. Tsukahara A, Seki S, Iiai T, Moroda T, Watanabe H, Suzuki S, Tada T, Hiraide H, Hatakeyama K, Abo T (1997) Mouse liver T cells: their change with aging and in comparison with peripheral T cells. Hepatology 26(2):301–309. doi:S0270913997003443 [pii] 10.1002/hep.510260208

    Google Scholar 

  74. Crough T, Purdie DM, Okai M, Maksoud A, Nieda M, Nicol AJ (2004) Modulation of human Valpha24(+)Vbeta11(+) NKT cells by age, malignancy and conventional anticancer therapies. Br J Cancer 91(11):1880–1886. doi:10.1038/sj.bjc.6602218

    Article  PubMed  CAS  Google Scholar 

  75. Godfrey DI, Kronenberg M (2004) Going both ways: immune regulation via CD1d-dependent NKT cells. J Clin Invest 114(10):1379–1388. doi:10.1172/JCI23594

    PubMed  CAS  Google Scholar 

  76. Wingender G, Krebs P, Beutler B, Kronenberg M (2010) Antigen-specific cytotoxicity by invariant NKT cells in vivo is CD95/CD178-dependent and is correlated with antigenic potency. J Immunol 185(5):2721–2729. doi:10.4049/jimmunol.1001018

    Article  PubMed  CAS  Google Scholar 

  77. Metelitsa LS, Naidenko OV, Kant A, Wu HW, Loza MJ, Perussia B, Kronenberg M, Seeger RC (2001) Human NKT cells mediate antitumor cytotoxicity directly by recognizing target cell CD1d with bound ligand or indirectly by producing IL-2 to activate NK cells. J Immunol 167(6):3114–3122

    PubMed  CAS  Google Scholar 

  78. Chang PP, Barral P, Fitch J, Pratama A, Ma CS, Kallies A, Hogan JJ, Cerundolo V, Tangye SG, Bittman R, Nutt SL, Brink R, Godfrey DI, Batista FD, Vinuesa CG (2012) Identification of Bcl-6-dependent follicular helper NKT cells that provide cognate help for B cell responses. Nat Immunol 13(1):35–43. doi:10.1038/ni.2166

    Article  CAS  Google Scholar 

  79. Kronenberg M, Kinjo Y (2009) Innate-like recognition of microbes by invariant natural killer T cells. Curr Opin Immunol 21(4):391–396. doi:10.1016/j.coi.2009.07.002

    Article  PubMed  CAS  Google Scholar 

  80. Cohen NR, Garg S, Brenner MB (2009) Antigen presentation by CD1 lipids, T cells, and NKT cells in microbial immunity. Adv Immunol 102:1–94. doi:10.1016/S0065-2776(09)01201-2

    Article  PubMed  CAS  Google Scholar 

  81. Kobayashi E, Motoki K, Uchida T, Fukushima H, Koezuka Y (1995) KRN7000, a novel immunomodulator, and its antitumor activities. Oncol Res 7(10–11):529–534

    PubMed  CAS  Google Scholar 

  82. Yu KO, Porcelli SA (2005) The diverse functions of CD1d-restricted NKT cells and their potential for immunotherapy. Immunol Lett 100(1):42–55. doi:10.1016/j.imlet.2005.06.010

    Article  PubMed  CAS  Google Scholar 

  83. Parekh VV, Lalani S, Van Kaer L (2007) The in vivo response of invariant natural killer T cells to glycolipid antigens. Int Rev Immunol 26(1–2):31–48. doi:10.1080/08830180601070179

    Article  PubMed  CAS  Google Scholar 

  84. Fujii S, Shimizu K, Hemmi H, Steinman RM (2007) Innate Valpha14(+) natural killer T cells mature dendritic cells, leading to strong adaptive immunity. Immunol Rev 220:183–198. doi:10.1111/j.1600-065X.2007.00561.x

    Article  PubMed  CAS  Google Scholar 

  85. Silk JD, Hermans IF, Gileadi U, Chong TW, Shepherd D, Salio M, Mathew B, Schmidt RR, Lunt SJ, Williams KJ, Stratford IJ, Harris AL, Cerundolo V (2004) Utilizing the adjuvant properties of CD1d-dependent NK T cells in T cell-mediated immunotherapy. J Clin Invest 114(12):1800–1811. doi:10.1172/JCI22046

    PubMed  CAS  Google Scholar 

  86. Eberl G, MacDonald HR (2000) Selective induction of NK cell proliferation and cytotoxicity by activated NKT cells. Eur J Immunol 30(4):985–992. doi:10.1002/(SICI)1521-4141(200004)30:4<985:AID-IMMU985>3.0.CO;2-E

    Article  PubMed  CAS  Google Scholar 

  87. Arora P, Venkataswamy MM, Baena A, Bricard G, Li Q, Veerapen N, Ndonye R, Park JJ, Lee JH, Seo KC, Howell AR, Chang YT, Illarionov PA, Besra GS, Chung SK, Porcelli SA (2011) A rapid fluorescence-based assay for classification of iNKT cell activating glycolipids. J Am Chem Soc 133(14):5198–5201. doi:10.1021/ja200070u

    Article  PubMed  CAS  Google Scholar 

  88. Venkataswamy MM, Porcelli SA (2010) Lipid and glycolipid antigens of CD1d-restricted natural killer T cells. Semin Immunol 22(2):68–78. doi:10.1016/j.smim.2009.10.003

    Article  PubMed  CAS  Google Scholar 

  89. Li Q, Ndonye RM, Illarionov PA, Yu KO, Jerud ES, Diaz K, Bricard G, Porcelli SA, Besra GS, Chang YT, Howell AR (2007) Rapid identification of immunostimulatory alpha-galactosylceramides using synthetic combinatorial libraries. J Comb Chem 9(6):1084–1093. doi:10.1021/cc070057i

    Article  PubMed  CAS  Google Scholar 

  90. Maldonado-Garcia G, Chico-Ortiz M, Lopez-Marin LM, Sanchez-Garcia FJ (2004) High-polarity Mycobacterium avium-derived lipids interact with murine macrophage lipid rafts. Scand J Immunol 60(5):463–470. doi:10.1111/j.0300-9475.2004.01511.x

    Article  PubMed  CAS  Google Scholar 

  91. Joyce S, Woods AS, Yewdell JW, Bennink JR, De Silva AD, Boesteanu A, Balk SP, Cotter RJ, Brutkiewicz RR (1998) Natural ligand of mouse CD1d1: cellular glycosylphosphatidylinositol. Science 279(5356):1541–1544

    Article  PubMed  CAS  Google Scholar 

  92. Gumperz JE (2000) Murine CD1d-restricted T cell recognition of cellular lipids. Immunity 12:211–221

    Article  PubMed  CAS  Google Scholar 

  93. Fox LM (2009) Recognition of lyso-phospholipids by human natural killer T lymphocytes. PLoS Biol 7:e1000228

    Article  PubMed  CAS  Google Scholar 

  94. Porubsky S (2007) Normal development and function of invariant natural killer T cells in mice with isoglobotrihexosylceramide (iGb3) deficiency. Proc Natl Acad Sci U S A 104:5977–5982

    Article  PubMed  CAS  Google Scholar 

  95. Gadola SD (2006) Impaired selection of invariant natural killer T cells in diverse mouse models of glycosphingolipid lysosomal storage diseases. J Exp Med 203:2293–2303

    Article  PubMed  CAS  Google Scholar 

  96. Brennan PJ, Tatituri RV, Brigl M, Kim EY, Tuli A, Sanderson JP, Gadola SD, Hsu FF, Besra GS, Brenner MB (2011) Invariant natural killer T cells recognize lipid self antigen induced by microbial danger signals. Nat Immunol. doi:10.1038/ni.2143

    PubMed  Google Scholar 

  97. Fischer K, Scotet E, Niemeyer M, Koebernick H, Zerrahn J, Maillet S, Hurwitz R, Kursar M, Bonneville M, Kaufmann SH, Schaible UE (2004) Mycobacterial phosphatidylinositol mannoside is a natural antigen for CD1d-restricted T cells. Proc Natl Acad Sci U S A 101(29):10685–10690. doi:10.1073/pnas.0403787101

    Article  PubMed  CAS  Google Scholar 

  98. Kinjo Y, Illarionov P, Vela JL, Pei B, Girardi E, Li X, Li Y, Imamura M, Kaneko Y, Okawara A, Miyazaki Y, Gomez-Velasco A, Rogers P, Dahesh S, Uchiyama S, Khurana A, Kawahara K, Yesilkaya H, Andrew PW, Wong CH, Kawakami K, Nizet V, Besra GS, Tsuji M, Zajonc DM, Kronenberg M (2011) Invariant natural killer T cells recognize glycolipids from pathogenic Gram-positive bacteria. Nat Immunol 12(10):966–974. doi:10.1038/ni.2096

    Article  PubMed  CAS  Google Scholar 

  99. Kinjo Y, Kronenberg M (2009) Detection of microbes by natural killer T cells. Adv Exp Med Biol 633:17–26

    Article  PubMed  CAS  Google Scholar 

  100. Kinjo Y, Pei B, Bufali S, Raju R, Richardson SK, Imamura M, Fujio M, Wu D, Khurana A, Kawahara K, Wong CH, Howell AR, Seeberger PH, Kronenberg M (2008) Natural Sphingomonas glycolipids vary greatly in their ability to activate natural killer T cells. Chem Biol 15(7):654–664. doi:10.1016/j.chembiol.2008.05.012

    Article  PubMed  CAS  Google Scholar 

  101. Amprey JL, Im JS, Turco SJ, Murray HW, Illarionov PA, Besra GS, Porcelli SA, Spath GF (2004) A subset of liver NK T cells is activated during Leishmania donovani infection by CD1d-bound lipophosphoglycan. J Exp Med 200(7):895–904. doi:10.1084/jem.20040704

    Article  PubMed  CAS  Google Scholar 

  102. Lotter H, Gonzalez-Roldan N, Lindner B, Winau F, Isibasi A, Moreno-Lafont M, Ulmer AJ, Holst O, Tannich E, Jacobs T (2009) Natural killer T cells activated by a lipopeptidophosphoglycan from Entamoeba histolytica are critically important to control amebic liver abscess. PLoS Pathog 5(5):e1000434. doi:10.1371/journal.ppat.1000434

    Article  PubMed  CAS  Google Scholar 

  103. Brigl M, Bry L, Kent SC, Gumperz JE, Brenner MB (2003) Mechanism of CD1d-restricted natural killer T cell activation during microbial infection. Nat Immunol 4(12):1230–1237. doi:10.1038/ni1002ni1002 [pii]

    Google Scholar 

  104. Wu D, Zajonc DM, Fujio M, Sullivan BA, Kinjo Y, Kronenberg M, Wilson IA, Wong CH (2006) Design of natural killer T cell activators: structure and function of a microbial glycosphingolipid bound to mouse CD1d. Proc Natl Acad Sci U S A 103(11):3972–3977. doi:10.1073/pnas.0600285103

    Article  PubMed  CAS  Google Scholar 

  105. Girardi E, Yu ED, Li Y, Tarumoto N, Pei B, Wang J, Illarionov P, Kinjo Y, Kronenberg M, Zajonc DM (2011) Unique interplay between sugar and lipid in determining the antigenic potency of bacterial antigens for NKT cells. PLoS Biol 9(11):e1001189. doi:10.1371/journal.pbio.1001189

    Article  PubMed  CAS  Google Scholar 

  106. Zajonc DM, Maricic I, Wu D, Halder R, Roy K, Wong CH, Kumar V, Wilson IA (2005) Structural basis for CD1d presentation of a sulfatide derived from myelin and its implications for autoimmunity. J Exp Med 202(11):1517–1526. doi:10.1084/jem.20051625

    Article  PubMed  CAS  Google Scholar 

  107. Zajonc DM, Savage PB, Bendelac A, Wilson IA, Teyton L (2008) Crystal structures of mouse CD1d-iGb3 complex and its cognate Valpha14 T cell receptor suggest a model for dual recognition of foreign and self glycolipids. J Mol Biol 377(4):1104–1116. doi:10.1016/j.jmb.2008.01.061

    Article  PubMed  CAS  Google Scholar 

  108. Borg NA, Wun KS, Kjer-Nielsen L, Wilce MC, Pellicci DG, Koh R, Besra GS, Bharadwaj M, Godfrey DI, McCluskey J, Rossjohn J (2007) CD1d-lipid-antigen recognition by the semi-invariant NKT T-cell receptor. Nature 448(7149):44–49. doi:10.1038/nature05907

    Article  PubMed  CAS  Google Scholar 

  109. Li Y, Girardi E, Wang J, Yu ED, Painter GF, Kronenberg M, Zajonc DM (2010) The Valpha14 invariant natural killer T cell TCR forces microbial glycolipids and CD1d into a conserved binding mode. J Exp Med 207(11):2383–2393. doi:10.1084/jem.20101335

    Article  PubMed  CAS  Google Scholar 

  110. Wang J, Li Y, Kinjo Y, Mac TT, Gibson D, Painter GF, Kronenberg M, Zajonc DM (2010) Lipid binding orientation within CD1d affects recognition of Borrelia burgorferi antigens by NKT cells. Proc Natl Acad Sci U S A 107(4):1535–1540. doi:10.1073/pnas.0909479107

    Article  PubMed  CAS  Google Scholar 

  111. Joyce S, Girardi E, Zajonc DM (2011) NKT cell ligand recognition logic: molecular basis for a synaptic duet and transmission of inflammatory effectors. J Immunol 187(3):1081–1089. doi:10.4049/jimmunol.1001910

    Article  PubMed  CAS  Google Scholar 

  112. Florence WC, Xia C, Gordy LE, Chen W, Zhang Y, Scott-Browne J, Kinjo Y, Yu KO, Keshipeddy S, Pellicci DG, Patel O, Kjer-Nielsen L, McCluskey J, Godfrey DI, Rossjohn J, Richardson SK, Porcelli SA, Howell AR, Hayakawa K, Gapin L, Zajonc DM, Wang PG, Joyce S (2009) Adaptability of the semi-invariant natural killer T-cell receptor towards structurally diverse CD1d-restricted ligands. EMBO J 28(22):3579–3590. doi:10.1038/emboj.2009.286

    Article  PubMed  CAS  Google Scholar 

  113. Salio M, Speak AO, Shepherd D, Polzella P, Illarionov PA, Veerapen N, Besra GS, Platt FM, Cerundolo V (2007) Modulation of human natural killer T cell ligands on TLR-mediated antigen-presenting cell activation. Proc Natl Acad Sci U S A 104(51):20490–20495. doi:10.1073/pnas.0710145104

    Article  PubMed  CAS  Google Scholar 

  114. Sada-Ovalle I, Chiba A, Gonzales A, Brenner MB, Behar SM (2008) Innate invariant NKT cells recognize Mycobacterium tuberculosis-infected macrophages, produce interferon-gamma, and kill intracellular bacteria. PLoS Pathog 4(12):e1000239. doi:10.1371/journal.ppat.1000239

    Article  PubMed  CAS  Google Scholar 

  115. Duthie MS, Kahn M, White M, Kapur RP, Kahn SJ (2005) Both CD1d antigen presentation and interleukin-12 are required to activate natural killer T cells during Trypanosoma cruzi infection. Infect Immun 73(3):1890–1894. doi:10.1128/IAI.73.3.1890-1894.2005

    Article  PubMed  CAS  Google Scholar 

  116. Emoto Y, Yoshizawa I, Hurwitz R, Brinkmann V, Kaufmann SH, Emoto M (2008) Role of interleukin-12 in determining differential kinetics of invariant natural killer T cells in response to differential burden of Listeria monocytogenes. Microbes Infect 10(3):224–232. doi:10.1016/j.micinf.2007.11.008

    Article  PubMed  CAS  Google Scholar 

  117. Nagarajan NA, Kronenberg M (2007) Invariant NKT cells amplify the innate immune response to lipopolysaccharide. J Immunol 178(5):2706–2713

    PubMed  CAS  Google Scholar 

  118. Stetson DB, Mohrs M, Reinhardt RL, Baron JL, Wang ZE, Gapin L, Kronenberg M, Locksley RM (2003) Constitutive cytokine mRNAs mark natural killer (NK) and NK T cells poised for rapid effector function. J Exp Med 198(7):1069–1076. doi:10.1084/jem.20030630 jem.20030630 [pii]

    Google Scholar 

  119. Matsuda JL, Gapin L, Baron JL, Sidobre S, Stetson DB, Mohrs M,Locksley RM, Kronenberg M (2003) Mouse V alpha 14i natural killer T cells are resistant to cytokine polarization in vivo. Proc Natl Acad Sci U S A 100(14):8395–8400. doi:10.1073/pnas.1332805100 1332805100 [pii]

    Google Scholar 

  120. Hermans IF, Silk JD, Gileadi U, Salio M, Mathew B, Ritter G, Schmidt R, Harris AL, Old L, Cerundolo V (2003) NKT cells enhance CD4+ and CD8+ T cell responses to soluble antigen in vivo through direct interaction with dendritic cells. J Immunol 171(10):5140–5147

    PubMed  CAS  Google Scholar 

  121. Behar SM, Dascher CC, Grusby MJ, Wang CR, Brenner MB (1999) Susceptibility of mice deficient in CD1D or TAP1 to infection with Mycobacterium tuberculosis. J Exp Med 189(12):1973–1980

    Article  PubMed  CAS  Google Scholar 

  122. Dieli F, Taniguchi M, Kronenberg M, Sidobre S, Ivanyi J, Fattorini L, Iona E, Orefici G, De Leo G, Russo D, Caccamo N, Sireci G, Di Sano C, Salerno A (2003) An anti-inflammatory role for V alpha 14 NK T cells in Mycobacterium bovis bacillus Calmette-Guerin-infected mice. J Immunol 171(4):1961–1968

    PubMed  CAS  Google Scholar 

  123. Ryll R, Watanabe K, Fujiwara N, Takimoto H, Hasunuma R, Kumazawa Y, Okada M, Yano I (2001) Mycobacterial cord factor, but not sulfolipid, causes depletion of NKT cells and upregulation of CD1d1 on murine macrophages. Microbes Infect 3(8):611–619. doi:S1286457901014162 [pii]

    Google Scholar 

  124. Gilleron M, Ronet C, Mempel M, Monsarrat B, Gachelin G, Puzo G (2001) Acylation state of the phosphatidylinositol mannosides from Mycobacterium bovis bacillus Calmette Guerin and ability to induce granuloma and recruit natural killer T cells. J Biol Chem 276(37):34896–34904. doi:10.1074/jbc.M103908200 M103908200 [pii]

    Google Scholar 

  125. Apostolou I, Takahama Y, Belmant C, Kawano T, Huerre M, Marchal G, Cui J, Taniguchi M, Nakauchi H, Fournie JJ, Kourilsky P, Gachelin G (1999) Murine natural killer T(NKT) cells [correction of natural killer cells] contribute to the granulomatous reaction caused by mycobacterial cell walls. Proc Natl Acad Sci U S A 96(9):5141–5146

    Article  PubMed  CAS  Google Scholar 

  126. Guidry TV, Olsen M, Kil KS, Hunter RL Jr, Geng YJ, Actor JK (2004) Failure of CD1D-/- mice to elicit hypersensitive granulomas to mycobacterial cord factor trehalose 6,6′-dimycolate. J Interferon Cytokine Res 24(6):362–371. doi:10.1089/107999004323142222

    Article  PubMed  CAS  Google Scholar 

  127. Burdin N, Brossay L, Koezuka Y, Smiley ST, Grusby MJ, Gui M, Taniguchi M, Hayakawa K, Kronenberg M (1998) Selective ability of mouse CD1 to present glycolipids: alpha-galactosylceramide specifically stimulates V alpha 14+ NK T lymphocytes. J Immunol 161(7):3271–3281

    PubMed  CAS  Google Scholar 

  128. Sousa AO, Mazzaccaro RJ, Russell RG, Lee FK, Turner OC, Hong S, Van Kaer L, Bloom BR (2000) Relative contributions of distinct MHC class I-dependent cell populations in protection to tuberculosis infection in mice. Proc Natl Acad Sci U S A 97(8):4204–4208

    Article  PubMed  CAS  Google Scholar 

  129. Kawakami K, Kinjo Y, Uezu K, Yara S, Miyagi K, Koguchi Y, Nakayama T, Taniguchi M, Saito A (2002) Minimal contribution of Valpha14 natural killer T cells to Th1 response and host resistance against mycobacterial infection in mice. Microbiol Immunol 46(3):207–210

    PubMed  CAS  Google Scholar 

  130. Sugawara I, Yamada H, Mizuno S, Li CY, Nakayama T, Taniguchi M (2002) Mycobacterial infection in natural killer T cell knockout mice. Tuberculosis 82(2–3):97–104. doi:S1472979202903318 [pii]

    Google Scholar 

  131. D’Souza CD, Cooper AM, Frank AA, Ehlers S, Turner J, Bendelac A, Orme IM (2000) A novel nonclassic beta2-microglobulin-restricted mechanism influencing early lymphocyte accumulation and subsequent resistance to tuberculosis in the lung. Am J Respir Cell Mol Biol 23(2):188–193

    PubMed  Google Scholar 

  132. Szalay G, Zugel U, Ladel CH, Kaufmann SH (1999) Participation of group 2 CD1 molecules in the control of murine tuberculosis. Microbes Infect 1(14):1153–1157

    Article  PubMed  CAS  Google Scholar 

  133. Emoto M, Emoto Y, Kaufmann SH (1997) Bacille Calmette Guerin and interleukin-12 down-modulate interleukin-4-producing CD4+ NK1+ T lymphocytes. Eur J Immunol 27(1):183–188. doi:10.1002/eji.1830270127

    Article  PubMed  CAS  Google Scholar 

  134. Chiba A, Dascher CC, Besra GS, Brenner MB (2008) Rapid NKT cell responses are self-terminating during the course of microbial infection. J Immunol 181(4):2292–2302. doi:181/4/2292 [pii]

    Google Scholar 

  135. Veenstra H, Baumann R, Carroll NM, Lukey PT, Kidd M, Beyers N, Bolliger CT, van Helden PD, Walzl G (2006) Changes in leucocyte and lymphocyte subsets during tuberculosis treatment; prominence of CD3dimCD56+ natural killer T cells in fast treatment responders. Clin Exp Immunol 145(2):252–260. doi:CEI3144 [pii] 10.1111/j.1365-2249.2006.03144.x

    Google Scholar 

  136. Im JS, Kang TJ, Lee SB, Kim CH, Lee SH, Venkataswamy MM, Serfass ER, Chen B, Illarionov PA, Besra GS, Jacobs WR Jr, Chae GT, Porcelli SA (2008) Alteration of the relative levels of iNKT cell subsets is associated with chronic mycobacterial infections. Clin Immunol 127(2):214–224. doi:S1521-6616(07)01441-6 [pii] 10.1016/j.clim.2007.12.005

    Google Scholar 

  137. Montoya CJ, Catano JC, Ramirez Z, Rugeles MT, Wilson SB, Landay AL (2008) Invariant NKT cells from HIV-1 or Mycobacterium tuberculosis-infected patients express an activated phenotype. Clin Immunol 127(1):1–6. doi:S1521-6616(07)01442-8 [pii] 10.1016/j.clim.2007.12.006

    Google Scholar 

  138. Snyder-Cappione JE, Nixon DF, Loo CP, Chapman JM, Meiklejohn DA, Melo FF, Costa PR, Sandberg JK, Rodrigues DS, Kallas EG (2007) Individuals with pulmonary tuberculosis have lower levels of circulating CD1d-restricted NKT cells. J Infect Dis 195(9):1361–1364. doi:JID37263 [pii] 10.1086/513567

    Google Scholar 

  139. Gansert JL, Kiessler V, Engele M, Wittke F, Rollinghoff M, Krensky AM, Porcelli SA, Modlin RL, Stenger S (2003) Human NKT cells express granulysin and exhibit antimycobacterial activity. J Immunol 170(6):3154–3161

    PubMed  CAS  Google Scholar 

  140. Chackerian A, Alt J, Perera V, Behar SM (2002) Activation of NKT cells protects mice from tuberculosis. Infect Immun 70(11):6302–6309

    Article  PubMed  CAS  Google Scholar 

  141. Sada-Ovalle I, Skold M, Tian T, Besra GS, Behar SM (2010) Alpha-galactosylceramide as a therapeutic agent for pulmonary Mycobacterium tuberculosis infection. Am J Respir Crit Care Med 182(6):841–847. doi:200912-1921OC [pii] 10.1164/rccm.200912-1921OC

    Google Scholar 

  142. Venkataswamy MM, Baena A, Goldberg MF, Bricard G, Im JS, Chan J, Reddington F, Besra GS, Jacobs WR Jr, Porcelli SA (2009) Incorporation of NKT cell-activating glycolipids enhances immunogenicity and vaccine efficacy of Mycobacterium bovis bacillus Calmette-Guerin. J Immunol 183(3):1644–1656. doi:183/3/1644 [pii] 10.4049/jimmunol.0900858

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven A. Porcelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Arora, P., Foster, E.L., Porcelli, S.A. (2013). CD1d and Natural Killer T Cells in Immunity to Mycobacterium tuberculosis . In: Divangahi, M. (eds) The New Paradigm of Immunity to Tuberculosis. Advances in Experimental Medicine and Biology, vol 783. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6111-1_11

Download citation

Publish with us

Policies and ethics