Skip to main content

Escape Probability for Stochastic Dynamical Systems with Jumps

  • Conference paper
  • First Online:
Malliavin Calculus and Stochastic Analysis

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 34))

Abstract

The escape probability is a deterministic concept that quantifies some aspects of stochastic dynamics. This issue has been investigated previously for dynamical systems driven by Gaussian Brownian motions. The present work considers escape probabilities for dynamical systems driven by non-Gaussian Lévy motions, especially symmetric α-stable Lévy motions. The escape probabilities are characterized as solutions of the Balayage-Dirichlet problems of certain partial differential-integral equations. Differences between escape probabilities for dynamical systems driven by Gaussian and non-Gaussian noises are highlighted. In certain special cases, analytic results for escape probabilities are given.

AMS Subject Classification (2010): 60H10, 60J75, 35S15, 31C05.

Received 10/31/2011; Accepted 4/3/2012; Final 5/1/2012

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Applebaum, D.: Lévy Processes and Stochastic Calculus, 2nd edn. Cambridge Univ. Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  2. Bergström, H.: On some expansions of stable distribution functions. Ark. Math. 2, 375–378 (1952)

    Article  MATH  Google Scholar 

  3. Blumenthal, R.M., Getoor, R.K.: Markov Processes and Potential Theory. Academic, New York (1968)

    MATH  Google Scholar 

  4. Brannan, J., Duan, J., Ervin, V.: Escape probability, mean residence time and geophysical fluid particle dynamics. Physica D 133, 23–33 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, H., Duan, J., Li, X., Zhang, C.: A computational analysis for mean exit time under non-Gaussian Levy noises. Appl. Math. Comput. 218(5), 1845–1856 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, Z.Q.: On notions of harmonicity. P. Am. Math. Soc. 137, 3497–3510 (2009)

    Article  MATH  Google Scholar 

  7. Chen, Z., Kim, P., Song, R.: Heat kernel estimates for the Dirichlet fractional Laplacian. J. Eur. Math. Soc. 12, 1307–1329 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, Z.Q., Zhao, Z.: Diffusion processes and second order elliptic operators with singular coefficients for lower order terms. Math. Ann. 302, 323–357 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dynkin, E.B.: Markov Processes, vol. I. Springer, Berlin (1965)

    MATH  Google Scholar 

  10. Gao, T., Duan, J., Li, X., Song, R.: Mean exit time and escape probability for dynamical systems driven by Lévy noise. Preprint (2011) arXiv:1201.6015v1 [math.NA]

    Google Scholar 

  11. Guan, Q., Ma, Z.: Boundary problems for fractional Laplacians. Stochast. Dynam. 5, 385–424 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes, 2nd edn. North-Holland, Amsterdam (1989)

    MATH  Google Scholar 

  13. Jacob, N.: Pseudo differential operators and Markov processes. Markov Processes and Applications, vol. III. Imperial College Press, London (2005)

    Google Scholar 

  14. Koren, T., Chechkin, A.V., Klafter, J.: On the first passage time and leapover properties of Lévy motions. Physica A 379, 10–22 (2007)

    Article  MathSciNet  Google Scholar 

  15. Liao, M.: The Dirichlet problem of a discontinuous Markov process. Acta. Math. Sin. 5, 9–15 (1989)

    Article  MATH  Google Scholar 

  16. Lin, C.C., Segel, L.A.: Mathematics Applied to Deterministic Problems in the Natural Sciences. SIAM, Philadelphia (1988)

    Book  MATH  Google Scholar 

  17. Ma, Z., Zhu, R., Zhu, X.: On notions of harmonicity for non-symmetric Dirichlet form. Sci. China (Mathematics) 53, 1407–1420 (2010)

    Google Scholar 

  18. Matkowsky, B., Schuss, Z., Tier, C.: Asymptotic methods for Markov jump processes. AMS Lect. Appl. Math. 27, 215–240 (1991)

    MathSciNet  Google Scholar 

  19. Oksendal, B.: Stochastic Differential Equations: An Introduction with Applications, 6th edn. Springer, Berlin (2003)

    Google Scholar 

  20. Qiao, H., Zhang, X.: Homeomorphism flows for non-Lipschitz stochastic differential equations with jumps. Stoch. Proc. Appl. 118, 2254–2268 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sato, K.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  22. Schuss, Z.: Theory and Applications of Stochastic Differential Equations. Wiley, New York (1980)

    MATH  Google Scholar 

  23. Smith, W., Watson, G.S.: Diffusion out of a triangle. J. Appl. Prob. 4, 479–488 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  24. Song, R.: Probabilistic approach to the Dirichlet problem of perturbed stable processes. Probab. Theory Rel. 95(3), 371–389 (1993)

    Article  MATH  Google Scholar 

  25. Viswanathan, G.M., Afanasyev, V., Buldyrev, S.V., Havlin, S., Daluz, M., Raposo, E., Stanley, H.: Lévy flights in random searches. Physica A 282, 1–12 (2000)

    Article  Google Scholar 

  26. Woyczynski, W.A.: Lévy processes in the physical sciences. In: Barndorff-Nielsen, O.E., Mikosch, T., Resnick, S.I. (eds.) Lévy Processes: Theory and Applications, pp. 241–266. Birkhäuser, Boston (2001)

    Chapter  Google Scholar 

  27. Yamada, T., Watanabe, S.: On the uniqueness of solutions of stochastic differential equations. J. Math. Kyoto Univ. 11, 155–167 (1971)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We have benefited from our previous collaboration with Ting Gao, Xiaofan Li, and Renming Song. We thank Ming Liao, Renming Song, and Zhen–Qing Chen for helpful discussions. This work was done while Huijie Qiao was visiting the Institute for Pure and Applied Mathematics (IPAM), Los Angeles. This work is partially supported by the NSF of China (No. 11001051 and No. 11028102) and the NSF grant DMS-1025422.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinqiao Duan .

Editor information

Editors and Affiliations

Additional information

Dedicated to Professor David Nualart on the occasion of his 60th birthday

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this paper

Cite this paper

Qiao, H., Kan, X., Duan, J. (2013). Escape Probability for Stochastic Dynamical Systems with Jumps. In: Viens, F., Feng, J., Hu, Y., Nualart , E. (eds) Malliavin Calculus and Stochastic Analysis. Springer Proceedings in Mathematics & Statistics, vol 34. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-5906-4_9

Download citation

Publish with us

Policies and ethics