Skip to main content

Invasive Species

  • Chapter
  • First Online:
Ecological Systems

Abstract

Biological invasion is the process by which a species is introduced, deliberately or inadvertently, into a new geographic region where it proliferates and persists. Outside their natural range (in which they evolved) such species are described as nonnative (or nonindigenous, exotic, alien). For a variety of reasons, the vast majority of introduced nonnative organisms fail to persist. Many of those that do establish self-sustaining populations do not spread very far or very fast beyond their point of introduction, and they often do not have conspicuous impacts on their environment. However, a small proportion (but a large and growing number) of nonnative species becomes invasive – that is, they may spread aggressively and/or have strong environmental effects. Invasive species are a global problem that threatens native biodiversity, the normal functioning of ecosystems, natural resources, regional economies, and human health. As such, they pose a major concern for conservation and management, and are the focus of a highly productive multidisciplinary field called invasion ecology.

This chapter was originally published as part of the Encyclopedia of Sustainability Science and Technology edited by Robert A. Meyers. DOI:10.1007/978-1-4419-0851-3

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Biological invasion:

The process by which an organism is introduced to, and establishes a sustainable population in, a region beyond its native range.

Eradication:

The managed extirpation of an entire nonnative population.

Impact:

The effect of a nonnative species on its environment.

Invasibility:

The vulnerability of a habitat, community, or ecosystem to invasion.

Invasion ecology:

A multidisciplinary field that examines the causes and consequences of biological invasions.

Invasional meltdown:

The phenomenon in which multiple nonnative species facilitate one another’s invasion success and impact.

Invasive species:

Nonnative species with conspicuously high colonization rates. Such species have the potential to spread over long distances. The term invasive is also used (often by policy makers) to describe colonizing species that cause undesirable ecological or economic impacts.

Nonnative species (synonyms: alien, exotic, foreign, nonindigenous):

Species present in a region beyond their historic range.

Propagule pressure:

The quantity or rate of nonnative organisms released into an area.

Bibliography

Primary Literature

  1. Elton CS (1958) The ecology of invasions by animals and plants. Methuen, London

    Google Scholar 

  2. Lockwood JL, Hoopes MF, Marchetti MP (2007) Invasion ecology. Blackwell, Oxford

    Google Scholar 

  3. Davis MA (2009) Invasion biology. Oxford University Press, Oxford

    Google Scholar 

  4. Blackburn TM, Lockwood JL, Cassey P (2009) Avian invasions. Oxford University Press, Oxford

    Book  Google Scholar 

  5. Richardson DM (ed) (2011) Fifty years of invasion ecology – the legacy of Charles Elton. Wiley-Blackwell, Chichester

    Google Scholar 

  6. Simberloff D (2009) The role of propagule pressure in biological invasions. Annu Rev Ecol Evol System 40:81–102

    Article  Google Scholar 

  7. Lockwood JL, Cassey P, Blackburn TM (2009) The more you introduce the more you get: the role of propagule and colonization pressure in invasion success. Divers Distrib 15:904–910

    Article  Google Scholar 

  8. Lonsdale WM (1999) Global patterns of plant invasions and the concept of invasibility. Ecology 80:1522–1536

    Article  Google Scholar 

  9. Rilov G, Benayahu Y, Gasith A (2004) Prolonged lag in population outbreak of an invasive mussel: a shifting habitat model. Biol Invasions 6:347–364

    Article  Google Scholar 

  10. Crooks JA (2005) Lag times and exotic species: the ecology and management of biological invasions in slow-motion. Ecoscience 12:316–329

    Article  Google Scholar 

  11. Tobin PC, Berec L, Liebhold AM (2011) Exploiting allee effects for managing biological invasions. Ecol Lett 14:615–624

    Article  PubMed  Google Scholar 

  12. Richardson DM, Allsopp N, D’Antonio CM, Milton SJ, Rejmànek M (2000) Plant invasions – the role of mutualisms. Biol Rev 75:65–93

    Article  PubMed  CAS  Google Scholar 

  13. Witte S, Buschbaum C, van Beusekom EE, Reise K (2010) Does climatic warming explain why an introduced barnacle finally takes over after a lag of more than 50 years? Biol Invasions 12:3579–3589

    Article  Google Scholar 

  14. Hulme PE (2006) Beyond control: wider implications for the management of biological invasions. J Appl Ecol 43:835–847

    Article  Google Scholar 

  15. Shigesada N, Kawasaki K (1997) Biological invasions: theory and practice. Oxford University Press, Oxford

    Google Scholar 

  16. Hengeveld R (1989) Dynamics of biological invasions. Chapman and Hall, New York

    Google Scholar 

  17. Mack RN, Simberloff D, Lonsdale WM, Evans H, Clout M, Bazzazz FA (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecol Appl 10:689–710

    Article  Google Scholar 

  18. MacIsaac HJ, Grigorovich IA, Ricciardi A (2001) Reassessment of species invasions concepts: the Great Lakes basin as an example. Biol Invasions 3:405–416

    Article  Google Scholar 

  19. Vasquez DP (2006) Exploring the relationship between niche breadth and invasion success. In: Cadotte M, McMahon SM, Fukami T (eds) Conceptual ecology and invasion ecology. Springer, Dordrecht, pp 307–322

    Google Scholar 

  20. Hayes KR, Barry SC (2008) Are there any consistent predictors of invasion success? Biol Invasions 10:483–506

    Article  Google Scholar 

  21. Blackburn TM, Cassey P, Lockwood JL (2009) The role of species traits in the establishment success of exotic birds. Glob Chang Biol 15:2852–2860

    Article  Google Scholar 

  22. Goodwin BJ, McAllister AJ, Fahrig L (1999) Predicting invasiveness of plant species based on biological information. Conserv Biol 13:422–426

    Article  Google Scholar 

  23. Sol D, Timmermans S, Lefebvre L (2002) Behavioural flexibility and invasion success in birds. Anim Behav 63:495–502

    Article  Google Scholar 

  24. Sol D, Bacher S, Reader SM, Lefebvre L (2008) Brain size predicts the success of mammal species introduced to novel environments. Am Nat 172:S63–S71

    Article  PubMed  Google Scholar 

  25. Amiel JJ, Ringley R, Shine R (2011) Smart moves: effects of relative brain size on establishment success of invasive amphibians and reptiles. PLoS One 6(4):e18277

    Article  PubMed  CAS  Google Scholar 

  26. Drake JM (2007) Parental investment and fecundity, but not brain size, are associated with establishment success in introduced fishes. Funct Ecol 21:963–968

    Article  Google Scholar 

  27. Davidson AM, Jennions M, Nicotra AB (2011) Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? A meta-analysis. Ecol Lett 14:419–431

    Article  PubMed  Google Scholar 

  28. Ordonez A, Wright IJ, Olff H (2010) Functional differences between native and alien species: a global-scale comparison. Funct Ecol 24:1353–1361

    Article  Google Scholar 

  29. Long JL (1981) Introduced birds of the world. Universe Books, New York

    Google Scholar 

  30. Mack RN, Lonsdale WM (2001) Humans as global plant dispersers: getting more than we bargained for. BioScience 51:95–102

    Article  Google Scholar 

  31. Reichard SH, White P (2001) Horticulture as a pathway of invasive plant introductions in the United States. BioScience 51:103–113

    Article  Google Scholar 

  32. Long JL (2003) Introduced mammals of the world. CSIRO Publishers, Collingwood

    Google Scholar 

  33. Suarez AV, Holway DA, Case TJ (2001) Patterns of spread in biological invasions dominated by long-distance jump dispersal: insights from Argentine ants. Proc Natl Acad Sci USA 98:1095–1100

    Article  PubMed  CAS  Google Scholar 

  34. Ricciardi A (2006) Patterns of invasion in the Laurentian Great Lakes in relation to changes in vector activity. Divers Distrib 12:425–433

    Article  Google Scholar 

  35. Fridley JD, Stachowicz JJ, Naeem S, Sax DF, Seabloom EW, Smith MD, Stohlgren TJ, Tilman D, Von Holle B (2007) The invasion paradox: reconciling pattern and process in species invasions. Ecology 88:3–17

    Article  PubMed  CAS  Google Scholar 

  36. Herben T, Mandák B, Bímova K, Münzbergova Z (2004) Invasibility and species richness of a community: a neutral model and a survey of published data. Ecology 85:3223–3233

    Article  Google Scholar 

  37. Levine JM, Adler PB, Yelenik SG (2004) A meta-analysis of biotic resistance to exotic plant invasions. Ecol Lett 7:975–989

    Article  Google Scholar 

  38. Olofsson J, Oksanen L, Callaghan T, Hulme PE, Oksanen T, Suominen O (2009) Herbivores inhibit climate-driven shrub expansion on the tundra. Glob Chang Biol 15:2681–2693

    Article  Google Scholar 

  39. Davis MA, Grime JP, Thompson K (2000) Fluctuating resources in plant communities: a general theory of invasibility. J Ecol 88:528–534

    Article  Google Scholar 

  40. Davis MA, Pelsor M (2001) Experimental support for a resource-based mechanistic model of invasibility. Ecol Lett 4:421–428

    Article  Google Scholar 

  41. Funk JL, Vitousek PM (2007) Resource-use efficiency and plant invasion in low-resource systems. Nature 446:1079–1081

    Article  PubMed  CAS  Google Scholar 

  42. Leprieur F, Hickey MA, Arbuckle CJ, Closs GP, Brosse A, Townsend CR (2006) Hydrological disturbance benefits a native fish at the expense of an exotic fish. J Appl Ecol 43:930–939

    Article  Google Scholar 

  43. Keane RM, Crawley MJ (2002) Exotic plant invasions and the enemy release hypothesis. Trends Ecol Evol 17:164–170

    Article  Google Scholar 

  44. Blossey B, Nötzold R (1995) Evolution of increased competitive ability in invasive nonindigenous plants: a hypothesis. J Ecol 83:887–889

    Article  Google Scholar 

  45. Blumenthal D, Mitchell CE, Pyšek P, Jarošik V (2009) Synergy between pathogen release and resource availability in plant invasion. Proc Natl Acad Sci USA 106:7899–7904

    Article  PubMed  CAS  Google Scholar 

  46. Westphal MI, Browne M, MacKinnon K, Noble I (2008) The link between international trade and the global distribution of invasive alien species. Biol Invasions 10:391–398

    Article  Google Scholar 

  47. Lin W, Cheng X, Xu R (2011) Impact of different economic factors on biological invasions on the global scale. PLoS One 6(4):e18797

    Article  PubMed  CAS  Google Scholar 

  48. Carlton JT (1999) The scale and ecological consequences of biological invasion in the World’s oceans. In: Sandlund OT, Schei PJ, Viken Å (eds) Invasive species and biodiversity management. Kluwer, Dordrecht, pp 195–212

    Chapter  Google Scholar 

  49. Vitousek PM, D’Antonio CM, Loope LL, Rejmanek M, Westbrooks R (1997) Introduced species: a significant component of human-caused global change. N Z J Ecol 21:1–16

    Google Scholar 

  50. Leppäkoski E, Olenin S (2000) Non-native species and rates of spread: lessons from the brackish Baltic Sea. Biol Invasions 2:151–163

    Article  Google Scholar 

  51. Mack RN (1997) Plant invasions: early and continuing expressions of global change. In: Huntley B, Cramer W, Morgan AV, Prentice HC, Allen JRM (eds) Past and future rapid environmental changes: the spatial and evolutionary responses of terrestrial biota. Springer, Berlin, pp 205–216

    Google Scholar 

  52. Bogustkaya NG, Naseka AM (2002) Freshwater fishes of Russia database. http://www.zin.ru/animalia/pisces/. Accessed 22 July 2011

  53. Callmander MW, Phillipson PB, Schatz GE, Andriambololonera S, Rabarimanarivo M, Rakotonirina N, Raharimampionona J, Chatelain C, Gautier L, Lowry PP (2011) The endemic and non-endemic vascular flora of Madagascar updated. Plant Ecol Evol 144:121–125

    Article  Google Scholar 

  54. Froese R, Pauly D (2011) FishBase. www.fishbase.org, version (06/2011). Accessed 11 July 2011

  55. Hockey PAR, Dean WRJ, Ryan PG (2005) Roberts – birds of southern Africa, 7th edn. The Trustees of the John Voelcker Bird book Fund, Cape Town

    Google Scholar 

  56. Koehn JD, MacKenzie RF (2004) Priority management actions for alien freshwater fish species in Australia. N Z J Mar Freshw Res 38:457–472

    Google Scholar 

  57. Lehtonen H (2002) Alien freshwater fishes of Europe. In: Leppakoski E, Gollasch S, Olenin S (eds) Invasive aquatic species of Europe: distribution, impacts and management. Kluwer, Dordrecht

    Google Scholar 

  58. Ricciardi A (2007) Are modern biological invasions an unprecedented form of global change? Conserv Biol 21:329–336

    Article  PubMed  Google Scholar 

  59. Frenot Y, Chown SL, Whinam J, Selkirk PM, Convey P, Skotnicki M, Bergstrom DM (2005) Biological invasions in the Antarctic: extent, impacts and implications. Biol Rev 80:45–72

    Article  PubMed  Google Scholar 

  60. Parker IM, Simberloff D, Lonsdale WM, Goodell K, Wonham M, Kareiva PM, Williamson MH, Von Holle B, Moyle PB, Byers JE, Goldwasser L (1999) Impact: toward a framework for understanding the ecological effects of invaders. Biol Invasions 1:3–19

    Article  Google Scholar 

  61. Ricciardi A (2003) Predicting the impacts of an introduced species from its invasion history: an empirical approach applied to zebra mussel invasions. Freshw Biol 48:972–981

    Article  Google Scholar 

  62. Brooks ML, D’Antonio CM, Richardson DM, Grace JB, Keeley JE, DiTomaso JM, Hobbs RJ, Pellant M, Pyke D (2004) Effects of invasive alien plants on fire regimes. BioScience 54:677–688

    Article  Google Scholar 

  63. Croll DA, Maron JL, Estes JA, Danner EM, Byrd GV (2005) Introduced predators transform subarctic islands from grassland to tundra. Science 307:1959–1961

    Article  PubMed  CAS  Google Scholar 

  64. Simberloff D (2011) How common are invasion-induced ecosystem impacts? Biol Invasions 13:1255–1268

    Article  Google Scholar 

  65. Spencer CN, McClelland BR, Stanford JA (1991) Shrimp stocking, salmon collapse, and eagle displacement. BioScience 41:14–21

    Article  Google Scholar 

  66. Burghardt KT, Tallamy DW, Philips C, Shropshire KJ (2010) Non-native plants reduce abundance, richness, and host specialization in lepidopteran communities. Ecosphere 1(5):1–22

    Article  Google Scholar 

  67. Traveset A, Richardson DM (2006) Biological invasions as disruptors of plant reproductive mutualisms. Trends Ecol Evol 21:208–216

    Article  PubMed  Google Scholar 

  68. Sekercioglu CH (2011) Functional extinctions of bird pollinators cause plant declines. Science 331:1019–1020

    Article  PubMed  Google Scholar 

  69. Ricciardi A (2004) Assessing species invasions as a cause of extinction. Trends Ecol Evol 19:619

    Article  Google Scholar 

  70. Clavero M, García-Berthou E (2005) Invasive species are a leading cause of animal extinctions. Trends Ecol Evol 20:110

    Article  PubMed  Google Scholar 

  71. Clavero M, Brotons L, Pons P, Sol D (2009) Prominent role of invasive species in avian biodiversity loss. Biol Conserv 142:2043–2049

    Article  Google Scholar 

  72. Ebenhard T (1988) Introduced birds and mammals. Swed Wildl Res (Viltrevy) 13(4):1–107

    Google Scholar 

  73. Ricciardi A, Simberloff D (2009) Assisted colonization is not a viable conservation strategy. Trends Ecol Evol 24:248–253

    Article  PubMed  Google Scholar 

  74. Fritts TH, Rodda GH (1998) The role of introduced species in the degradation of island ecosystems: a case history of Guam. Annu Rev Ecol Syst 29:113–140

    Article  Google Scholar 

  75. Blackburn TM, Petchey OL, Cassey P, Gaston KJ (2005) Functional diversity of mammalian predators and extinction in island birds. Ecology 86:2916–2923

    Article  Google Scholar 

  76. Witte F, Goldschmidt T, Wanink J, Vanoijen M, Goudswaard K, Wittemaas E, Bouton N (1992) The destruction of an endemic species flock – quantitative data on the decline of the haplochromine cichlids of Lake Victoria. Environ Biol Fish 34:1–28

    Article  Google Scholar 

  77. Spear D, Chown SL (2009) Non-indigenous ungulates as a threat to biodiversity. J Zool 279:1–17

    Article  Google Scholar 

  78. Carrete M, Serrano D, Illera JC, López G, Vögeli M, Delgado A, Tella JL (2009) Goats, birds, and emergent diseases: apparent and hidden effects of exotic species in an island environment. Ecol Appl 19:840–853

    Article  PubMed  Google Scholar 

  79. Simberloff D (2006) Hybridization between native and introduced wildlife species: importance for conservation. Wildl Biol 2:143–150

    Google Scholar 

  80. Ayres DR, Zaremba K, Strong DR (2004) Extinction of a common native species by hybridization with an invasive congener. Weed Technol 18S:1288–1291

    Article  Google Scholar 

  81. Wyatt KB, Campos PF, Gilbert MTP, Kolokotronis S-O, Hynes WH, DeSalle R, Ball SJ, Daszak P, MacPhee RDE, Greenwood AD (2008) Historical mammal extinction on Christmas Island (Indian Ocean) correlates with introduced infectious disease. PLoS One 3(11):e3602

    Article  PubMed  CAS  Google Scholar 

  82. Higgins SN, Vander Zanden MJ (2010) What a difference a species makes: a meta–analysis of dreissenid mussel impacts on freshwater ecosystems. Ecol Monogr 80:179–196

    Article  Google Scholar 

  83. Vitousek PM, Whiteaker LR, Mueller-Dombois D, Matson PA (1987) Biological invasion by Myrica faya alters ecosystem development in Hawai’i. Science 238:802–804

    Article  PubMed  CAS  Google Scholar 

  84. Aplet GH (1990) Alteration of earthworm community biomass by the alien Myrica faya in Hawaii. Oecologia 82:414–416

    Article  Google Scholar 

  85. Pimentel D, McNair S, Janecka J, Wightman J, Simmonds C, O’Connell C, Wong E, Russel L, Zern J, Aquino T, Tsomondo T (2001) Economic and environmental threats of alien plant, animal, and microbe invasions. Agric Ecosyst Environ 84:1–20

    Article  Google Scholar 

  86. Kovacs KF, Haight RG, McCullough DG, Mercader RJ, Siegert NW, Liebhold AM (2010) Cost of potential emerald ash borer damage in U.S. communities, 2009–2019. Ecol Econ 69:569–578

    Article  Google Scholar 

  87. Chomel BB, Sun B (2010) Bioterrorism and invasive species. Rev Sci Tech 29:193–199

    PubMed  CAS  Google Scholar 

  88. Colautti RI, Bailey SA, van Overdijk CDA, Amundsen K, MacIsaac HJ (2006) Characterised and projected costs of nonindigenous species in Canada. Biol Invasions 8:45–59

    Article  Google Scholar 

  89. Pejchar L, Mooney HA (2009) Invasive species, ecosystem services and human well-being. Trends Ecol Evol 24:497–504

    Article  PubMed  Google Scholar 

  90. Le Maitre DC, Versfeld DB, Chapman RA (2000) The impact of invading alien plants on surface water resources in South Africa: a preliminary assessment. Water SA 26:397–408

    Google Scholar 

  91. Cook DC, Thomas MB, Cunningham SA, Anderson DL, De Barro PJ (2007) Predicting the economic impact of an invasive species on an ecosystem service. Ecol Appl 17:1832–1840

    Article  PubMed  Google Scholar 

  92. Lounibos LP (2002) Invasions by insect vectors of human disease. Annu Rev Entomol 47:233–266

    Article  PubMed  CAS  Google Scholar 

  93. Lv S, Zhang Y, Steinmann P, Yang G-J, Yang K, Zhou X-N, Utzinger J (2011) The emergence of angiostrongyliasis in the People’s Republic of China: the interplay between invasive snails, climate change and transmission dynamics. Freshw Biol 56:717–734

    Article  Google Scholar 

  94. Vilà M, Basnou C, Pyšek P, Josefsson M, Genovesi P, Gollasch S, Nentwig W, Olenin S, Roques A, Roy D, Hulme PE (2010) How well do we understand the impacts of alien species on ecosystem services? A pan-European, cross-taxa assessment. Front Ecol Environ 8:135–144

    Article  Google Scholar 

  95. Purse BV, Mellor PS, Rogers DJ, Samuel AR, Mertens PPC, Baylis M (2005) Climate change and the recent emergence of bluetongue in Europe. Nat Rev Microbiol 3:171–181

    Article  PubMed  CAS  Google Scholar 

  96. Reichard S, Hamilton CW (1997) Predicting invasions of woody plants introduced into North America. Conserv Biol 11:193–203

    Article  Google Scholar 

  97. Kolar CS, Lodge DM (2002) Ecological predictions and risk assessments for alien species. Science 298:1233–1236

    Article  PubMed  CAS  Google Scholar 

  98. Ricciardi A, Cohen J (2007) The invasiveness of an introduced species does not predict its impact. Biol Invasions 9:309–315

    Article  Google Scholar 

  99. Callaway RM, Ridenour WM (2004) Novel weapons: invasive success and the evolution of increased competitive ability. Front Ecol Environ 2:436–443

    Article  Google Scholar 

  100. Short J, Kinnear JE, Robley A (2002) Surplus killing by introduced predators in Australia – evidence for ineffective anti-predator adaptations in native prey species? Biol Conserv 103:283–301

    Article  Google Scholar 

  101. Ricciardi A, Atkinson SK (2004) Distinctiveness magnifies the impact of biological invaders in aquatic ecosystems. Ecol Lett 7:781–784

    Article  Google Scholar 

  102. Strauss SY, Webb CO, Salamin N (2007) Exotic taxa less related to native species are more invasive. Proc Natl Acad Sci U S A 103:5841–5845

    Article  CAS  Google Scholar 

  103. Simberloff D, Von Holle B (1999) Positive interactions of nonindigenous species: invasional meltdown? Biol Invasions 1:21–32

    Article  Google Scholar 

  104. Ricciardi A, Palmer ME, Yan ND (2011) Should biological invasions be managed as natural disasters? BioScience 61:312–317

    Article  Google Scholar 

  105. Bailey SA, Deneau MG, Jean L, Wiley CJ, Leung B, MacIsaac HJ (2001) Evaluating efficacy of an environmental policy to prevent biological invasions. Environ Sci Technol 45:2554–2561

    Article  CAS  Google Scholar 

  106. Huston MA (2004) Management strategies for plant invasions: manipulating productivity, disturbance, and competition. Divers Distrib 10:167–178

    Article  Google Scholar 

  107. Risch SJ, Andow D, Altieri MA (1983) Agroecosystem diversity and pest control: data, tentative conclusions, and new directions. Environ Entomol 12:625–629

    Google Scholar 

  108. Pascal M, Siorat F, Lorvelec O, Yésou P, Simberloff D (2005) A pleasing consequence of Norway rat eradication: two shrew species recover. Divers Distrib 11:193–198

    Article  Google Scholar 

  109. Donlan CJ, Campbell K, Cabrera W, Lavoie C, Carrion V, Cruz F (2007) Recovery of the Galapagos rail (Laterallus spilonotus) following the removal of invasive mammals. Biol Conserv 138:520–524

    Article  Google Scholar 

  110. Myers JH, Simberloff D, Kuris AM, Carey JR (2000) Eradication revisited: dealing with exotic species. Trends Ecol Evol 15:316–320

    Article  PubMed  Google Scholar 

  111. Rayner MJ, Hauber ME, Imber MJ, Stamp RK, Clout MN (2007) Spatial heterogeneity of mesopredator release within an oceanic island system. Proc Natl Acad Sci U S A 104:20862–20865

    Article  PubMed  CAS  Google Scholar 

  112. Bergstrom DM, Lucieer A, Kiefer K, Wasley J, Belbin L, Pedersen TK, Chown SL (2009) Indirect effects of invasive species removal devastate World Heritage Island. J Appl Ecol 46:73–81

    Article  Google Scholar 

  113. Rinella MJ, Maxwell BD, Fay PK, Weaver T, Sheley RL (2009) Control effort exacerbates invasive-species problem. Ecol Appl 19:155–162

    Article  PubMed  Google Scholar 

  114. Louda SM, Arnett AE, Rand TA, Russell FL (2003) Invasiveness of some biological control insects and adequacy of their ecological risk assessment and regulation. Conserv Biol 17:73–82

    Article  Google Scholar 

  115. Callaway RM, DeLuca TH, Belliveau WM (1999) Biological-control herbivores may increase competitive ability if the noxious weed Centaura maculosa. Ecology 80:1196–1201

    Google Scholar 

  116. Lonsdale WM, FitzGibbon F (2011) The known unknowns – managing the invasion risk from biofuels. Curr Opin Environ Sustain 3:31–35

    Article  Google Scholar 

  117. Andow DA, Zwahlen C (2006) Assessing environmental risks of transgenic plants. Ecol Lett 9:196–214

    Article  PubMed  CAS  Google Scholar 

Books and Reviews

  • Catford JA, Jansson R, Nilsson C (2009) Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Divers Distrib 15:22–40

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Ricciardi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ricciardi, A. (2013). Invasive Species. In: Leemans, R. (eds) Ecological Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5755-8_10

Download citation

Publish with us

Policies and ethics