Skip to main content

Drug Discovery

  • Chapter
  • First Online:
Systems Biology of Tuberculosis
  • 1303 Accesses

Abstract

Despite availability of several drugs, a vaccine, decades of research and concerted efforts from medical and allied communities to manage tuberculosis, it is clear that the Mycobacterium tuberculosis has been successful in defying these efforts and continues to pose a major threat to mankind. Newer approaches, in particular, newer strategies for drug discovery are therefore urgently required. The science of drug discovery has witnessed multiple paradigm shifts in the past few decades, from a predominantly ligand-centric approach to a target-centric approach and now recently leaning towards a systems-based approach. The shifts can be attributed to several factors such as availability of publicly accessible databases containing genome sequences, functional and structural data of macromolecules, high-throughput experimental profiling, protein–protein interactions and pathway models, as well as adaptation and application of computational methods for efficient data mining and modeling. Several omics-scale experimental and in silico approaches have emerged recently to systematically address important questions in biology, with an obvious impact on drug discovery.

A systems view enables a broad understanding of the system as a whole, providing significant insights at multiple stages in the drug discovery pipeline, from target identification, understanding pharmacokinetics and pharmacodynamics, to personalized medicine. Of the systems approaches for drug discovery, modeling metabolism in the causative agent has received some attention. Flux balance analysis, and metabolic control analysis that can simulate the relative reaction fluxes under a variety of conditions, have provided lists of predicted essential proteins and hence potential drug targets. Perturbations such as gene knock-outs, drug inhibitions, double and triple knock-outs, exposure to different chemical environments can all be modeled through this approach. Interactomes capturing structural and functional protein–protein linkages have been useful in identifying proteins strategically located in the network, which when inhibited would perturb the network significantly. There have also been examples of rule-based or logic-based modeling studies that will help in identifying the effect of different scenarios of host–pathogen interactions and adaptations within each, thereby identifying optimal strategies for therapeutic intervention. The models themselves are increasingly being enriched with experimental information, as more and more genomics and proteomics data is becoming available. The potential of these methods that still remains to be tapped in drug discovery programs are discussed. The stage seems set for the integration and application of skills from mathematics, computer science, and engineering disciplines, to address complex problems in biology and drug discovery, in a big way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wirth T, Hildebrand F, Allix-Beguec C, Wolbeling F, Kubica T, Kremer K, van Soolingen D, Rusch-Gerdes S, Locht C, Brisse S, Meyer A, Supply P, Niemann S (2008) Origin, spread and demography of the Mycobacterium tuberculosis complex. PLoS Pathog 4(9):e1000160. doi:10.1371/journal.ppat.1000160

    Article  PubMed  Google Scholar 

  2. World Health Organisation (2008) World Health Organisation

    Google Scholar 

  3. Triccas JA, Davenport MP (2008) Infectious diseases: too little, too late for tuberculosis. Immunol Cell Biol 86(4):293–294. doi:icb20087[pii]10.1038/icb.2008.7

    Article  PubMed  Google Scholar 

  4. Drews J (2000) Drug discovery: a historical perspective. Science 287(5460):1960–1964. doi:8361[pii]

    Article  PubMed  CAS  Google Scholar 

  5. Butcher EC, Berg EL, Kunkel EJ (2004) Systems biology in drug discovery. Nat Biotechnol 22(10):1253–1259. doi:nbt1017[pii]10.1038/nbt1017

    Article  PubMed  CAS  Google Scholar 

  6. Hood L, Perlmutter RM (2004) The impact of systems approaches on biological problems in drug discovery. Nat Biotechnol 22(10):1215–1217. doi:nbt1004-1215[pii]10.1038/nbt1004-1215

    Article  PubMed  CAS  Google Scholar 

  7. Chandra N (2009) Computational systems approach for drug target discovery. Expert Opin Drug Discov 4(12):1221–1236. doi:10.1517/17460440903380422

    Article  CAS  Google Scholar 

  8. Kitano H (2002) Systems biology: a brief overview. Science 295(5560):1662–1664. doi:10.1126/science.1069492 295/5560/1662[pii]

    Article  PubMed  CAS  Google Scholar 

  9. Doyle J (2001) Computational biology. Beyond the spherical cow. Nature 411(6834):151–152. doi:10.1038/35075703 35075703[pii]

    Article  PubMed  CAS  Google Scholar 

  10. Kohl P, Noble D (2009) Systems biology and the virtual physiological human. Mol Syst Biol 5:292. doi:msb200951[pii]10.1038/msb.2009.51

    Article  PubMed  Google Scholar 

  11. Boran AD, Iyengar R (2010) Systems approaches to polypharmacology and drug discovery. Curr Opin Drug Discov Devel 13(3):297–309

    PubMed  CAS  Google Scholar 

  12. Zhang Y (2005) The magic bullets and tuberculosis drug targets. Annu Rev Pharmacol Toxicol 45:529–564. doi:10.1146/annurev.pharmtox.45.120403.100120

    Article  PubMed  CAS  Google Scholar 

  13. Rengarajan J, Sassetti CM, Naroditskaya V, Sloutsky A, Bloom BR, Rubin EJ (2004) The folate pathway is a target for resistance to the drug para-aminosalicylic acid (PAS) in mycobacteria. Mol Microbiol 53(1):275–282. doi:10.1111/j.1365-2958.2004.04120.xMMI4120[pii]

    Article  PubMed  CAS  Google Scholar 

  14. Lamichhane G (2011) Novel targets in M. tuberculosis: search for new drugs. Trends Mol Med. doi:S1471-4914(10)00150-4[pii]10.1016/j.molmed.2010.10.004

    Google Scholar 

  15. Shi W, Zhang X, Jiang X, Yuan H, Lee JS, Barry CE 3rd, Wang H, Zhang W, Zhang Y (2011) Pyrazinamide inhibits trans-translation in Mycobacterium tuberculosis. Science 333(6049):1630–1632. doi:science.1208813[pii]10.1126/science.1208813

    Article  PubMed  CAS  Google Scholar 

  16. Banerjee A, Dubnau E, Quemard A, Balasubramanian V, Um KS, Wilson T, Collins D, de Lisle G, Jacobs WR Jr (1994) inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science 263(5144):227–230

    Article  PubMed  CAS  Google Scholar 

  17. Larsen MH, Vilcheze C, Kremer L, Besra GS, Parsons L, Salfinger M, Heifets L, Hazbon MH, Alland D, Sacchettini JC, Jacobs WR Jr (2002) Overexpression of inhA, but not kasA, confers resistance to isoniazid and ethionamide in Mycobacterium smegmatis, M. bovis BCG and M. tuberculosis. Mol Microbiol 46(2):453–466. doi:3162[pii]

    Article  PubMed  Google Scholar 

  18. Campbell EA, Korzheva N, Mustaev A, Murakami K, Nair S, Goldfarb A, Darst SA (2001) Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell 104(6):901–912. doi:S0092-8674(01)00286-0[pii]

    Article  PubMed  CAS  Google Scholar 

  19. Raman K, Yeturu K, Chandra N (2008) targetTB: a target identification pipeline for Mycobacterium tuberculosis through an interactome, reactome and genome-scale structural analysis. BMC Syst Biol 2:109. doi:1752-0509-2-109[pii]10.1186/1752-0509-2-109

    Article  PubMed  Google Scholar 

  20. Kinnings SL, Liu N, Buchmeier N, Tonge PJ, Xie L, Bourne PE (2009) Drug discovery using chemical systems biology: repositioning the safe medicine Comtan to treat multi-drug and extensively drug resistant tuberculosis. PLoS Comput Biol 5(7):e1000423. doi:10.1371/journal.pcbi.1000423

    Article  PubMed  Google Scholar 

  21. Yamanishi Y, Kotera M, Kanehisa M, Goto S (2010) Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated framework. Bioinformatics 26(12):i246–i254

    Article  PubMed  CAS  Google Scholar 

  22. Congreve M, Murray CW, Blundell TL (2005) Keynote review: Structural biology and drug discovery. Drug Discov Today 10:895–907

    Article  PubMed  CAS  Google Scholar 

  23. Keller TH, Pichota A, Yin Z (2006) A practical view of ‘druggability’. Curr Opin Chem Biol 10(4):357–361

    Article  PubMed  CAS  Google Scholar 

  24. Vajda S, Guarnieri F (2006) Characterization of protein-ligand interaction sites using experimental and computational methods. Curr Opin Drug Discov Devel 9:354–362

    PubMed  CAS  Google Scholar 

  25. Bunnage ME (2011) Getting pharmaceutical R&D back on target. Nat Chem Biol 7:335–339

    Article  PubMed  CAS  Google Scholar 

  26. Mdluli K, Spigelman M (2006) Novel targets for tuberculosis drug discovery. Curr Opin Pharmacol 6(5):459–467

    Article  PubMed  CAS  Google Scholar 

  27. Anishetty S, Pulimi M, Pennathur G (2005) Potential drug targets in Mycobacterium tuberculosis through metabolic pathway analysis. Comput Biol Chem 29(5):368–378. doi:S1476-9271(05)00076-9[pii]10.1016/j.compbiolchem.2005.07.001

    Article  PubMed  CAS  Google Scholar 

  28. Hasan S, Daugelat S, Rao PS, Schreiber M (2006) Prioritizing genomic drug targets in pathogens: application to Mycobacterium tuberculosis. PLoS Comput Biol 2(6):e61. doi:05-PLCB-RA-0376R3[pii]10.1371/journal.pcbi.0020061

    Article  PubMed  Google Scholar 

  29. Raman K, Rajagopalan P, Chandra N (2005) Flux balance analysis of mycolic acid pathway: targets for anti-tubercular drugs. PLoS Comput Biol 1(5):e46. doi:10.1371/journal.pcbi.0010046

    Article  PubMed  Google Scholar 

  30. Beste DJ, Hooper T, Stewart G, Bonde B, Avignone-Rossa C, Bushell ME, Wheeler P, Klamt S, Kierzek AM, McFadden J (2007) GSMN-TB: a web-based genome-scale network model of Mycobacterium tuberculosis metabolism. Genome Biol 8(5):R89. doi:gb-2007-8-5-r89[pii]10.1186/gb-2007-8-5-r89

    Article  PubMed  Google Scholar 

  31. Jamshidi N, Palsson BO (2007) Investigating the metabolic capabilities of Mycobacterium tuberculosis H37Rv using the in silico strain iNJ661 and proposing alternative drug targets. BMC Syst Biol 1:26. doi:1752-0509-1-26[pii]10.1186/1752-0509-1-26

    Article  PubMed  Google Scholar 

  32. An J, Totrov M, Abagyan R (2005) Pocketome via comprehensive identification and classification of ligand binding envelopes. Mol Cell Proteomics 4:752–761

    Article  PubMed  CAS  Google Scholar 

  33. Csermely P, Agoston V, Pongor S (2005) The efficiency of multi-target drugs: the network approach might help drug design. Trends Pharmacol Sci 26(4):178–182. doi:S0165-6147(05)00055-6[pii]10.1016/j.tips.2005.02.007

    Article  PubMed  CAS  Google Scholar 

  34. Knox C, Law V, Jewison T, Liu P, Ly S, Frolkis A, Pon A, Banco K, Mak C, Neveu V, Djoumbou Y, Eisner R, Guo AC, Wishart DS (2011) DrugBank 3.0: a comprehensive resource for ‘omics’ research on drugs. Nucleic Acids Res 39:D1035–D1041. doi:gkq1126[pii]10.1093/nar/gkq1126

    Article  PubMed  Google Scholar 

  35. Chen X, Ji ZL, Chen YZ (2002) TTD: therapeutic target database. Nucleic Acids Res 30(1):412–415

    Article  PubMed  CAS  Google Scholar 

  36. Olah M, Bologa C, Oprea TI (2004) An automated PLS search for biologically relevant QSAR descriptors. J Comput Aided Mol Des 18(7–9):437–449

    Article  PubMed  CAS  Google Scholar 

  37. Yildirim MA, Goh KI, Cusick ME, Barabasi AL, Vidal M (2007) Drug-target network. Nat Biotechnol 25(10):1119–1126. doi:nbt1338[pii]10.1038/nbt1338

    Article  PubMed  CAS  Google Scholar 

  38. Arora P, Goyal A, Natarajan VT, Rajakumara E, Verma P, Gupta R, Yousuf M, Trivedi OA, Mohanty D, Tyagi A, Sankaranarayanan R, Gokhale RS (2009) Mechanistic and functional insights into fatty acid activation in Mycobacterium tuberculosis. Nat Chem Biol 5(3):166–173. doi:nchembio.143[pii]10.1038/nchembio.143

    Article  PubMed  CAS  Google Scholar 

  39. du Toit LC, Pillay V, Danckwerts MP (2006) Tuberculosis chemotherapy: current drug delivery approaches. Respir Res 7:118. doi:1465-9921-7-118[pii]10.1186/1465-9921-7-118

    Article  PubMed  Google Scholar 

  40. Raman K, Bhat AG, Chandra N (2010) A systems perspective of host-pathogen interactions: predicting disease outcome in tuberculosis. Mol Biosyst 6(3):516–530. doi:10.1039/b912129c

    Article  PubMed  CAS  Google Scholar 

  41. Johnson R, Streicher EM, Louw GE, Warren RM, van Helden PD, Victor TC (2006) Drug resistance in Mycobacterium tuberculosis. Curr Issues Mol Biol 8(2):97–111

    PubMed  CAS  Google Scholar 

  42. Argyrou A, Jin L, Siconilfi-Baez L, Angeletti RH, Blanchard JS (2006) Proteome-wide profiling of isoniazid targets in Mycobacterium tuberculosis. Biochemistry 45(47):13947–13953. doi:10.1021/bi061874m

    Article  PubMed  CAS  Google Scholar 

  43. Tan YT, Tillett DJ, McKay IA (2000) Molecular strategies for overcoming antibiotic resistance in bacteria. Mol Med Today 6(8):309–314. doi:S1357-4310(00)01739-1[pii]

    Article  PubMed  CAS  Google Scholar 

  44. Nguyen L, Thompson CJ (2006) Foundations of antibiotic resistance in bacterial physiology: the mycobacterial paradigm. Trends Microbiol 14(7):304–312. doi:S0966-842X(06)00125-9[pii]10.1016/j.tim.2006.05.005

    Article  PubMed  CAS  Google Scholar 

  45. Sandgren A, Strong M, Muthukrishnan P, Weiner BK, Church GM, Murray MB (2009) Tuberculosis drug resistance mutation database. PLoS Med 6(2):e2. doi:08-PLME-HIA-2556[pii]10.1371/journal.pmed.1000002

    Article  PubMed  Google Scholar 

  46. Raman K, Chandra N (2008) Mycobacterium tuberculosis interactome analysis unravels potential pathways to drug resistance. BMC Microbiol 8:234. doi:1471-2180-8-234[pii]10.1186/1471-2180-8-234

    Article  PubMed  Google Scholar 

  47. Padiadpu J, Vashisht R, Chandra N (2011) Protein-protein interaction networks suggest different targets have different propensities for triggering drug resistance. Syst Synth Biol 4(4):311–322. doi:10.1007/s11693-011-9076-5

    Article  Google Scholar 

  48. Kumar D, Nath L, Kamal MA, Varshney A, Jain A, Singh S, Rao KV (2010) Genome-wide analysis of the host intracellular network that regulates survival of Mycobacterium tuberculosis. Cell 140(5):731–743. doi:S0092-8674(10)00127-3[pii]10.1016/j.cell.2010.02.012

    Article  PubMed  CAS  Google Scholar 

  49. Chandra N, Kumar D, Rao K (2011) Systems biology of tuberculosis. Tuberculosis (Edinb) 91(5):487–496. doi:S1472-9792(11)00031-X[pii]10.1016/j.tube.2011.02.008

    Article  CAS  Google Scholar 

  50. Ghosh S, Prasad KV, Vishveshwara S, Chandra N (2011) Rule-based modelling of iron homeostasis in tuberculosis. Mol Biosyst 7(10):2750–2768. doi:10.1039/c1mb05093a

    Article  PubMed  CAS  Google Scholar 

  51. Bordbar A, Lewis NE, Schellenberger J, Palsson BO, Jamshidi N (2010) Insight into human alveolar macrophage and M. tuberculosis interactions via metabolic reconstructions. Mol Syst Biol 6:422. doi:msb201068[pii]10.1038/msb.2010.68

    Article  PubMed  Google Scholar 

  52. Bhardwaj A, Scaria V, Raghava GP, Lynn AM, Chandra N, Banerjee S, Raghunandanan MV, Pandey V, Taneja B, Yadav J, Dash D, Bhattacharya J, Misra A, Kumar A, Ramachandran S, Thomas Z, Brahmachari SK (2011) Open source drug discovery—a new paradigm of collaborative research in tuberculosis drug development. Tuberculosis (Edinb) 91(5):479–486. doi:S1472-9792(11)00102-8[pii]10.1016/j.tube.2011.06.004

    Google Scholar 

  53. Ekins S, Kaneko T, Lipinski CA, Bradford J, Dole K, Spektor A, Gregory K, Blondeau D, Ernst S, Yang J, Goncharoff N, Hohman MM, Bunin BA (2010) Analysis and hit filtering of a very large library of compounds screened against Mycobacterium tuberculosis. Mol Biosyst 6(11):2316–2324. doi:10.1039/c0mb00104j

    Article  PubMed  CAS  Google Scholar 

  54. Galagan JE, Sisk P, Stolte C, Weiner B, Koehrsen M, Wymore F, Reddy TB, Zucker JD, Engels R, Gellesch M, Hubble J, Jin H, Larson L, Mao M, Nitzberg M, White J, Zachariah ZK, Sherlock G, Ball CA, Schoolnik GK (2010) TB database 2010: overview and update. Tuberculosis (Edinb) 90(4):225–235. doi:S1472-9792(10)00041-7[pii]10.1016/j.tube.2010.03.010

    Article  Google Scholar 

Download references

Acknowledgments

The author thanks Deepika Ajit Sakorey and Priyanka Baloni for assistance in preparation of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagasuma Chandra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Chandra, N. (2013). Drug Discovery. In: McFadden, J., Beste, D., Kierzek, A. (eds) Systems Biology of Tuberculosis. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4966-9_9

Download citation

Publish with us

Policies and ethics