Skip to main content

Graph-Embedding Discriminant Analysis on Riemannian Manifolds for Visual Recognition

  • Chapter
  • First Online:
  • 1686 Accesses

Abstract

Recently, several studies have utilised non-Euclidean geometry to address several computer vision problems including object tracking [17], characterising the diffusion of water molecules as in diffusion tensor imaging [24], face recognition [23, 31], human re-identification [4], texture classification [16], pedestrian detection [39] and action recognition [22, 43].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In a Hausdorff space, distinct points have disjoint neighbourhoods. This property is important to establish the notion of a differential manifold, as it guarantees that convergent sequences have a single limit point.

  2. 2.

    Special orthogonal group SO(n) is the space of all n ×n orthogonal matrices with the determinant + 1. It is not a vector space but a differentiable manifold, i.e. it can be locally approximated by subsets of a Euclidean space.

  3. 3.

    A pseudo kernel is a function where the positive definiteness is not guaranteed to be satisfied for whole range of the function’s parameters. Nevertheless, it is possible to convert a pseudo kernel into sa true kernel, as discussed, for example, in [9].

  4. 4.

    The study in [40] addresses the problem of recognising actions in still images, which is different from the work presented here.

References

  1. Adini Y, Moses Y, Ullman S (1997) Face recognition: The problem of compensating for changes in illumination direction. IEEE Trans Pattern Anal Mach Intell 19(7):721–732

    Article  Google Scholar 

  2. Argyriou A, Micchelli CA, Pontil M (2009) When is there a representer theorem? vector versus matrix regularizers. J Mach Learn Res 10:2507–2529

    MathSciNet  MATH  Google Scholar 

  3. Bailly-Bailliére E, Bengio S, Bimbot F, Hamouz M, Kittler J, Mariéthoz J, Matas J, Messer K, Popovici V, Porée F, Ruiz B, Thiran JP (2003) The BANCA database and evaluation protocol. In: AVBPA. Lecture notes in computer science (LNCS), springer pp 1057–1057

    Google Scholar 

  4. Bak S, Corve E, Brmond F, Thonnat M (2011) Boosted human re-identification using riemannian manifolds. Image and Vision Comput, Elsevier

    Google Scholar 

  5. Bazzani L, Cristani M, Perina A, Farenzena M, Murino V (2010) Multiple-shot person re-identification by hpe signature. In: Proceedings of the 2010 20th international conference on pattern recognition. IEEE Computer Society, Silver Spring, pp 1413–1416

    Google Scholar 

  6. Belhumeur P, Hespanha J, Kriegman D (1997) Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 19(7):711–720

    Google Scholar 

  7. Bishop CM (2006) Pattern recognition and machine learning. Springer, Berlin

    MATH  Google Scholar 

  8. Cevikalp H, Triggs B (2010) Face recognition based on image sets. In: IEEE conference on computer vision and pattern recognition (CVPR). IEEE pp 2567–2573

    Google Scholar 

  9. Chen Y, Garcia EK, Gupta MR, Rahimi A, Cazzanti L (2009) Similarity-based classification: Concepts and algorithms. J Mach Learn Res 10:747–776

    MathSciNet  MATH  Google Scholar 

  10. Comaniciu D, Meer P (2002) Mean shift: A robust approach toward feature space analysis. IEEE Trans Pattern Anal Mach Intell 24(5):603–619

    Article  Google Scholar 

  11. Edelman A, Arias TA, Smith ST (1999) The geometry of algorithms with orthogonality constraints. SIAM J Matrix Anal Appl 20(2):303–353

    Article  MathSciNet  Google Scholar 

  12. Ess A, Leibe B, Van Gool L (2007) Depth and appearance for mobile scene analysis. In: IEEE 11th international conference on computer vision, 2007. ICCV 2007. IEEE, New York, pp 1–8

    Google Scholar 

  13. Farenzena M, Bazzani L, Perina A, Murino V, Cristani M (2010) Person re-identification by symmetry-driven accumulation of local features. In: 2010 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, New York, pp 2360–2367

    Google Scholar 

  14. Hamm J, Lee DD (2008) Grassmann discriminant analysis: a unifying view on subspace-based learning. In: Proceedings of the 25th international conference on Machine learning ACM pp 376–383

    Google Scholar 

  15. Harandi MT, Sanderson C, Shirazi S, Lovell BC (2011) Graph embedding discriminant analysis on Grassmannian manifolds for improved image set matching. In: IEEE conference on computer vision and pattern recognition (CVPR). IEEE pp 2705–2712

    Google Scholar 

  16. Harandi MT, Sanderson C, Wiliem A, Lovell BC (2012) Kernel analysis over Riemannian manifolds for visual recognition of actions, pedestrians and textures. In: IEEE workshop on the applications of computer vision (WACV), IEEE pp 433–439

    Google Scholar 

  17. Hu W, Li X, Luo W, Zhang X, Maybank S, Zhang Z (2012) Single and multiple object tracking using log-euclidean riemannian subspace and block-division appearance model. IEEE Trans Pattern Anal Mach Intell. IEEE

    Google Scholar 

  18. Kimeldorf GS, Wahba G (1970) A correspondence between bayesian estimation on stochastic processes and smoothing by splines. Ann Math Stat 41:495–502

    Article  MathSciNet  MATH  Google Scholar 

  19. Lee T (1996) Image representation using 2d gabor wavelets. IEEE Trans Pattern Anal Mach Intell 18(10):959–971

    Article  Google Scholar 

  20. Leibe B, Schiele B (2003) Analyzing appearance and contour based methods for object categorization. In: IEEE Conf. Computer Vision and Pattern Recognition (CVPR), vol 2, pp 409–415

    Google Scholar 

  21. Lui YM (2012) Advances in matrix manifolds for computer vision. Image and Vision Computing, 30(6), Elsevier, 380-388

    Google Scholar 

  22. O’Hara S, Lui YM, Draper BA (2011) Using a product manifold distance for unsupervised action recognition. Image and Vision Computing Elsevier

    Google Scholar 

  23. Pang Y, Yuan Y, Li X (2008) Gabor-based region covariance matrices for face recognition. IEEE Trans Circ Syst Video Technol 18(7):989–993

    Article  Google Scholar 

  24. Pennec X (2006) Intrinsic statistics on Riemannian manifolds: Basic tools for geometric measurements. J Math Imag Vision 25(1):127–154

    Article  MathSciNet  Google Scholar 

  25. Phillips P, Moon H, Rizvi S, Rauss P (2000) The feret evaluation methodology for face-recognition algorithms. IEEE Trans Pattern Anal Mach Intell 22(10):1090–1104

    Article  Google Scholar 

  26. Randen T, Husoy J (1999) Filtering for texture classification: A comparative study. IEEE Trans Pattern Anal Mach Intell 21(4):291–310

    Article  Google Scholar 

  27. Rosenberg S (1997) The Laplacian on a Riemannian manifold: An introduction to analysis on manifolds. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  28. Schwartz W, Davis L (2009) Learning discriminative appearance-based models using partial least squares. In: XXII Brazilian symposium on computer graphics and image processing (SIBGRAPI), 2009. IEEE, New York, pp 322–329

    Google Scholar 

  29. Shawe-Taylor J, Cristianini N (2004) Kernel methods for pattern analysis. Cambridge University Press, Cambridge

    Book  Google Scholar 

  30. Sim T, Baker S, Bsat M (2003) The CMU pose, illumination, and expression database. IEEE Trans Pattern Analysis and Machine Intelligence 25(12), 1615–1618

    Article  Google Scholar 

  31. Sivalingam R, Boley D, Morellas V, Papanikolopoulos N (2010a) Tensor sparse coding for region covariances. In: Computer VisionECCV 2010 pp. 722–735. Springer

    Google Scholar 

  32. Sivalingam R, Boley D, Morellas V, Papanikolopoulos N (2010b) Tensor sparse coding for region covariances. In: Computer vision–ECCV 2010, pp 722–735 springer

    Google Scholar 

  33. Sra S (2012) Positive definite matrices and the symmetric Stein divergence. Preprint: [arXiv:1110.1773]

    Google Scholar 

  34. Subbarao R, Meer P (2009) Nonlinear mean shift over Riemannian manifolds. Int J Comput Vision 84(1):1–20

    Article  Google Scholar 

  35. Tikhonov AN, Arsenin VY (1977) Solutions of Ill-posed problems. V.H. Winston & Sons, Washington, D.C.; Wiley, New York

    Google Scholar 

  36. Turaga P, Veeraraghavan A, Srivastava A, Chellappa R (2011) Statistical computations on grassmann and stiefel manifolds for image and video-based recognition. IEEE Trans Pattern Anal Mach Intell 33(11):2273–2286

    Article  Google Scholar 

  37. Turk M, Pentland A (1991) Eigenfaces for recognition. J Cognit Neurosci 3(1):71–86

    Article  Google Scholar 

  38. Tuzel O, Porikli F, Meer P (2006) Region covariance: A fast descriptor for detection and classification. In: Leonardis A, Bischof H, Pinz A (eds) European conference on computer vision (ECCV). Lecture notes in computer science, vol 3952. Springer, Berlin, pp 589–600

    Google Scholar 

  39. Tuzel O, Porikli F, Meer P (2008) Pedestrian detection via classification on Riemannian manifolds. IEEE Trans Pattern Anal Mach Intell (PAMI) 30:1713–1727

    Article  Google Scholar 

  40. Wang Y, Mori G (2009) Human action recognition by semilatent topic models. IEEE Trans Pattern Anal Mach Intell 31(10):1762–1774

    Article  Google Scholar 

  41. Wolf L, Shashua A (2003) Learning over sets using kernel principal angles. J Mach Learn Res 4:913–931

    MathSciNet  Google Scholar 

  42. Yamaguchi O, Fukui K, Maeda KI (1998) Face recognition using temporal image sequence. In: IEEE international conference on automatic face and gesture recognition, Washington, DC, 1998, pp 318–323

    Article  Google Scholar 

  43. Yuan C, Hu W, Li X, Maybank S, Luo G (2010) Human action recognition under log-euclidean riemannian metric. In: Asian conference on computer vision (ACCV). Lecture notes in computer science, vol 5994. Springer, Berlin, pp 343–353

    Google Scholar 

Download references

Acknowledgements

This project is supported by a grant from the Australian Government Department of the Prime Minister and Cabinet. NICTA is funded by the Australian Government’s Backing Australia’s Ability initiative, in part through the Australian Research Council. The first and second authors contributed equally.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrtash T. Harandi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shirazi, S., Alavi, A., Harandi, M.T., Lovell, B.C. (2013). Graph-Embedding Discriminant Analysis on Riemannian Manifolds for Visual Recognition. In: Fu, Y., Ma, Y. (eds) Graph Embedding for Pattern Analysis. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4457-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4457-2_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4456-5

  • Online ISBN: 978-1-4614-4457-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics