Skip to main content

Challenges for Implementing Polymer Gels in Defense Applications

  • Conference paper
  • First Online:
  • 3261 Accesses

Abstract

Polymer gels are soft, lightly crosslinked polymers that are highly swollen with solvent. The gel properties can be tuned by manipulating the polymer and solvent chemistry, solvent loading, polymer and solvent chain architecture, and the incorporation of various fillers and additives. This tunability provides broad utility in military applications including electronic devices, sensors, robotics, multi-functional textiles, responsive coatings, combat medical care, and tissue surrogates for ballistic testing. While potentially useful, a number of challenges can hinder gel utility for the Army. This paper describes recent efforts that offer promise to overcome these obstacles, including improving operational temperature performance and gel toughness.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Flory PJ (1953) Principles of polymer chemistry, vol 1. Cornell University, Ithaca, p 576

    Google Scholar 

  2. Kwon IC, Bae YH, Kim SW (1991) Electrically erodible polymer gel for controlled release of drugs. Nature 354:291–293

    Article  Google Scholar 

  3. Miyata T, Asami N, Uragami T (1999) A reversibly antigen-responsive hydrogel. Nature 399:766–769

    Article  Google Scholar 

  4. Murdan S (2003) Electro-responsive drug delivery from hydrogels. J Control Release 92:1–17

    Article  Google Scholar 

  5. Peppas NA, Huang Y, Torres-Lugo M, Ward JH, Zhang J (2000) Physicochemical, foundations and structural design of hydrogels in medicine and biology. Annu Rev Biomed Eng 2:9–29

    Article  Google Scholar 

  6. Jiang H, Su W, Mather PT, Bunning TJ (1999) Rheology of highly swollen chitosan/polyacrylate hydrogels. Polymer 40:4593–4602

    Article  Google Scholar 

  7. Hu Z, Chen Y, Wang C, Zheng Y, Li Y (1998) Polymer gels with engineered environmentally responsive surface patterns. Nature 393:149–152

    Article  Google Scholar 

  8. Holtz JH, Asher SA (1997) Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature 389:829–832

    Article  Google Scholar 

  9. Li J, Hong X, Liu Y, Li D, Wang Y-W, Li J-H, Bai Y-B, Li T-J (2005) Highly photoluminescent CdTe/Poly(N-isopropylacrylamide) temperature-sensitive gels. Adv Mater 17:163–166

    Article  Google Scholar 

  10. Park TG (1999) Temperature modulated protein release from pH/temperature-sensitive hydrogels. Biomaterials 20:517–521

    Article  Google Scholar 

  11. Schmaljohann D, Oswald J, Jorgensen B, Nitschke M, Beyerlein D, Werner C (2003) Thermo-responsive PNiAAm-g-PEG films for controlled cell detachment. Biomacromolecules 4:1733–1739

    Article  Google Scholar 

  12. Elarssari A, Rodrigue M, Meunier F, Herve C (2001) Hydrophilic magnetic latex for nucleic acid extraction, purification and concentration. J Magn Magnetic Mater 225:127–133

    Article  Google Scholar 

  13. Lenhart JL, Cole PJ (2006) Adhesion properties of lightly crosslinked solvent-swollen polymer gels. J Adhes 82:945–971

    Article  Google Scholar 

  14. Lenhart JL, Cole PJ, Unal B, Hedden R (2007) Development of nonaqueous polymer gels that exhibit broad temperature performance. Appl Phys Lett 91:061929

    Article  Google Scholar 

  15. Zosel A (1998) The effect of fibrilation on the tack of pressure sensitive adhesives. Int J Adhes Adhes 18:265–271

    Article  Google Scholar 

  16. Lakrout H, Sergot P, Creton C (1999) Direct observation of cavitation and fibrillation in a probe tack experiment on model acrylic pressure-sensitive-adhesives. J Adhes 69:307–359

    Article  Google Scholar 

  17. Mrozek R, Otim K, Shull K, Lenhart JL (2011) Influence of solvent size on the mechanical properties and rheology of polydimethylsiloxane-based polymeric gels. Polymer 52:3422–3430

    Article  Google Scholar 

  18. Gent AN, Lai SM (1994) Interfacial bonding, energy dissipation, and adhesion. J Polym Sci B 32:1543–1555

    Article  Google Scholar 

  19. Lake GJ, Thomas AG (1967) Strength of highly elastic materials. Proc R Soc London A Math Phys Sci 300:108

    Article  Google Scholar 

  20. Mazich KA, Samus MA, Smith CA, Rossi G (1991) Threshold fracture of lightly crosslinked networks. Macromolecules 24:2766–2769

    Article  Google Scholar 

  21. Hui CY, Jagota A, Bennison SJ, Londono JD (2003) Crack blunting and the strength of soft elastic solids. Proc R Soc Lond A Math Phys Eng Sci 459:1489–1516

    Article  MATH  Google Scholar 

  22. Krishnan VR, Hui CY, Long R (2008) Finite strain crack tip fields in soft incompressible elastic solids. Langmuir 24:14245–14253

    Article  Google Scholar 

  23. Tanaka Y, Kuwabara R, Na YH, Kurakawa T, Gong JP, Osada Y (2005) Determination of fracture energy of high strength double network hydrogels. J Phys Chem B 109:11559–11562

    Article  Google Scholar 

  24. Gong JP, Katsuyama Y, Kurokawa T, Osada Y (2003) Double-network hydrogels with extremely high mechanical strength. Adv Mater 15:1155–1158

    Article  Google Scholar 

  25. Baumberger T, Caroli C, Martina D (2006) Solvent control of crack dynamics in a reversible hydrogel. Nature Mater 5:552–555

    Article  Google Scholar 

  26. Baumberger T, Caroli C, Martina D (2006) Fracture of a biopolymer gel as a viscoplastic disentanglement process. Eur Phys J E 21:81–89

    Article  Google Scholar 

  27. Seitz ME, Martina D, Baumberger T, Krishnan VR, Hui CY, Shull KR (2009) Fracture and large strain behavior of self-assembled triblock copolymer gels. Soft Matter 5:447–456

    Article  Google Scholar 

  28. Creton C, Hu GJ, Deplace F, Morgret L, Shull KR (2009) Large-strain mechanical behavior of model block copolymer adhesives. Macromolecules 42:7605–7615

    Article  Google Scholar 

  29. Hirokawa Y, Tanaka T (1984) Volume phase transition in a nonionic gel. J Chem Phys 81(12):6379–6380

    Article  Google Scholar 

  30. Mrozek RA, Cole PJ, Cole SM, Schroeder JL, Schneider DA, Hedden RC, Lenhart JL (2010) Design of nonaqueous polymer gels with broad temperature performance: impact of solvent quality and processing conditions. J Mater Res 25:1105–1117

    Article  Google Scholar 

  31. O’Connor AE, Willenbacher N (2004) The effect of molecular weight and temperature on tack properties of model polyisobutylenes. Int J Adhes Adhes 24:335–346

    Article  Google Scholar 

Download references

Acknowledgements

K. Otim was funded by the U.S. Army Research Laboratory (ARL) and the National Physical Sciences Consortium Fellowship program. R. A. Mrozek was funded at ARL through a contract with the Oak Ridge Institute of Science and Engineering (ORISE). Certain commercial equipment and materials are identified in this paper in order to specify adequately the experimental procedure. In no case does such identification imply recommendations by the Army Research Laboratory nor does it imply that the material or equipment identified is necessarily the best available for this purpose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph L. Lenhart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Lenhart, J.L., Mrozek, R.A., Shull, K.R., Otim, K.J. (2013). Challenges for Implementing Polymer Gels in Defense Applications. In: Chalivendra, V., Song, B., Casem, D. (eds) Dynamic Behavior of Materials, Volume 1. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4238-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4238-7_16

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4237-0

  • Online ISBN: 978-1-4614-4238-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics