Skip to main content

The Presence of Venous Damage and Microbleeds in Traumatic Brain Injury and the Potential Future Role of Angiographic and Perfusion Magnetic Resonance Imaging

  • Chapter
  • First Online:
Cerebral Blood Flow, Metabolism, and Head Trauma

Abstract

Imaging plays a key role in the diagnosis and longitudinal follow up of traumatic brain injury (TBI). Among injury pathologies, vascular injury is associated with diffuse axonal injury (DAI) and traumatic axonal injury (TAI). The vascular network is ubiquitous and is an integral part of the tissue structure. In this chapter, we focus on angiographic and venographic-related imaging methods and their role in assessing mild, moderate, and severe TBI. We begin with an introduction to susceptibility weighted imaging (SWI) and magnetic resonance angiography (MRA) and then provide evidence of different types of vascular damage. Examples of TBI-induced microbleeds are presented along with the concept of low-impact medullary vein damage (MVD). This MVD has been seen even for so-called mild TBI cases. Vascular damage can also manifest as a reduction in local perfusion even when no clear macroscopic vessel damage is seen. To further understand the role of vascular abnormalities, we then introduce the different perfusion weighted imaging (PWI) techniques available and their application in TBI. The combination of SWI and PWI should make it possible to differentiate the role of local thrombus versus changes in oxygen saturation in MVD, for example. Since MRA and SWI are able to provide a full description of the brain’s vasculature in 3D, we briefly discuss the presence of finite element modeling in understanding vascular injury. We conclude with recommendations related to the use of perfusion with MRA, SWI, and oxygen saturation measurements to obtain a complete picture of the hemodynamics of the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Dayem HM, Abu-Judeh H, Kumar M, Atay S, Naddaf S, EL-Zeftawy H, Luo J (1998) SPECT brain perfusion abnormalities in mild or moderate traumatic brain injury. Clin Nucl Med 23(5):309–317

    Article  PubMed  CAS  Google Scholar 

  • Abu-Judeh H, Singh M, Masdeu JC (1998) Discordance between FDG uptake and technetium-99 m-HMPAO brain perfusion in acute traumatic brain injury. J Nucl Med 39:1357–1359

    PubMed  CAS  Google Scholar 

  • Alexander MP (1995) Mild traumatic brain injury, pathophysiology, natural history, and clinical management. Neurology 45:1253–1260

    Article  PubMed  CAS  Google Scholar 

  • Arbogast KB, Margulies SS (1997) Regional differences in mechanical properties of the porcine central nervous system. SAE, Warrrendale, PA, Proc. 41st Stapp Car Crash Conference, SAE Paper No. 973336

    Book  Google Scholar 

  • Bergsneider M, Hovda D, Shalmon E, Kelly D, Vespa P, Martin N, Phelps M, Mcarthur D, Caron M, Kraus J, Becker D (1997) Cerebral hyperglycolysis following severe traumatic brain injury in humans, a positron emission tomography study. J Neurosurg 86:241–251

    Article  PubMed  CAS  Google Scholar 

  • Bergsneider M, Hovda D, McArthur DL, Etchepare M, Huang S, Sehati N, Satz P, Phelps ME, Becker DP (2001) Metabolic recovery following human traumatic brain injury based on FDG-PET, time course and relationship to neurological disability. J Head Trauma Rehabil 16(2):135–148

    Article  PubMed  CAS  Google Scholar 

  • Bouma GJ, Muizelaar JP (1995) Cerebral blood flow in severe clinical head injury. New Horiz 3(3):384–394

    PubMed  CAS  Google Scholar 

  • Bouma GJ, Muizelaar JP, Choi SC, Newlon PG, Young HF (1991) Cerebral circulation and metabolism after severe traumatic brain injury: the elusive role of ischemia. J Neurosurg 75:585–593

    Google Scholar 

  • Brandi G, Bechir M, Sailer S, Haberthur C, Stocker R, Stover JF (2010) Transcranial color-coded duplex sonography allows to assess cerebral perfusion pressure noninvasively following severe traumatic brain injury. Acta Neurochir (Wien) 152(6):965–972

    Article  Google Scholar 

  • Catherine R, Sophie L, Nicolas B, Bernard V (2007) Transcranial Doppler ultrasound goal directed therapy for the early management of severe traumatic brain injury. Intensive Care Med 33:645–651

    Article  Google Scholar 

  • Christian Z, Marek C, Andrea L, Gianluca C, Dong-Joo K, Emmanuel C, John P, Peter K, Peter S (2010) A comparison study of cerebral autoregulation assessed with transcranial Doppler and cortical laser Doppler flowmetry. Neurol Res 32(4):425–428

    Article  Google Scholar 

  • DeWitt DS, Prough DS, Taylor CL, Whitley JM (1992) Reduced cerebral blood flow, oxygen delivery, and electroencephalographic activity after traumatic brain injury and mild hemorrhage in cats. J Neurosurg 76(5):812–821

    Article  PubMed  CAS  Google Scholar 

  • Duhaime AC, Gean AD, Haacke EM, Hicks R, Mukherjee P, Brody D, Latour L, Riedy G (2010) Common data elements in radiologic imaging of traumatic brain injury. Arch Phys Med Rehabil 91(11):1661–1666

    Article  PubMed  Google Scholar 

  • Fujima N, Kudo K, Terae S, Ishizaba K, Yazu R, Zaitsu Y, Tha K, Yoshida D, Sukhara AT, Haacke EM, Sasaki M (2011) Non-invasive measurement of oxygen saturation in the spinal vein using SWI: quantitative evaluation under conditions of physiological and caffeine load. Neuroimage 54(1):344–349

    Article  PubMed  CAS  Google Scholar 

  • Garnett M, Blamire A, Corkill R, Rajagopalan B, Young J, Cadoux-Hudson T, Styles P (2001) Abnormal cerebral blood volume in regions of contused and normal appearing brain following traumatic brain injury using perfusion magnetic resonance injury. J Neurotrauma 18(6):585–593

    Article  PubMed  CAS  Google Scholar 

  • Ge Y, Patel MB, Chen Q, Grossman EJ, Zhang K, Miles L, Babb JS, Reaume J, Grossman RI (2009) Assessment of thalamic perfusion in patients with mild traumatic brain injury by true FISP arterial spin labelling MR imaging at 3 T. Brain Inj 23(7):666–674

    Article  PubMed  Google Scholar 

  • Ge Y, Zhang Z, Lu H, Tang L, Jaggi H, Herbert J, Babb JS, Rusinek H, Grossman RI (2012) Characterizing brain oxygen metabolism in patients with multiple sclerosis with T2-relaxation-under-spin-tagging MRI. J Cereb Blood Flow Metab 32(3):403–412

    Article  PubMed  CAS  Google Scholar 

  • Gennarelli TA (1987) Cerebral concussions and diffuse brain injuries. In: Cooper PR (ed) Head injury. Williams and Wilkins, Baltimore, pp 108–124

    Google Scholar 

  • Gennarelli TA, Graham DI (1998) Neuropathology of the head injuries. Semin Clin Neuropsychiatry 3:160–175

    PubMed  Google Scholar 

  • Grossman CB (1996) Magnetic resonance imaging and computed tomography of the head and spine. Williams & Wilkins, Baltimore, USA

    Google Scholar 

  • Haacke EM (2004) Susceptibility weighted imaging (SWI). Magn Reson Med 52(3):612–618

    Article  PubMed  Google Scholar 

  • Haacke EM, Ye Y (2012) Susceptibility weighted imaging in functional MRI. Neuroimage (Epub ahead of print)

    Google Scholar 

  • Haacke EM, Duhaime AC, Gean AD, Riedy G, Wintermark M, Mukherjee P, Brody DL, DeGraba T, Duncan TD, Elovic E, Hurley R, Latour L, Smirniotopoulos JG, Smith DH (2010a) Common data elements in radiologic imaging of traumatic brain injury. J Magn Reson Imaging 32(3):516–543

    Article  PubMed  Google Scholar 

  • Haacke EM, Tang J, Neelavalli J (2010b) Susceptibility mapping as a means to visualize veins and quantify oxygen saturation. J Magn Reson Imaging 32(3):663–676

    Article  PubMed  CAS  Google Scholar 

  • Haacke EM, Reichenbach J, Xu Y (2011) Susceptibility weighted imaging in MRI: basic concepts and clinical applications. Wiley Blackwell, Hoboken, New Jersey

    Book  Google Scholar 

  • Haacke EM, Feng W, Utriainen D, Trifan G, Wu Z, Latif Z, Katkuri Y, Hubbard D (2012) Patients with multiple sclerosis with structural venous abnormalities on MR imaging exhibit an abnormal flow distribution of the internal jugular veins. J Vasc Interv Radiol 23(1):60–68

    Article  PubMed  Google Scholar 

  • Hayward NM, Tuunanen PI, Immonen R, Ndode-Ekane XE, Pitkänen A, Gröhn O (2011) Magnetic resonance imaging of regional hemodynamics and cerebrovascular recovery after lateral fluid-percussion brain injury in rats. J Cereb Blood Flow Metab 31(1):166–177

    Article  PubMed  Google Scholar 

  • Homburg AM, Jakobsen M, Enevoldsen E (1993) Transcranial Doppler recordings in raised intracranial pressure. Acta Neurol Scand 87(6):488–493

    Article  PubMed  CAS  Google Scholar 

  • Kelly DF, Martin NA (1997) Cerebral blood flow as a predictor of outcome following traumatic brain injury. J Neurosurg 86:633–641

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Whyte J, Patel S, Avants B, Europa E, Wang J, Slattery J, Gee JC, Coslett HB, Detre JA (2010) Resting cerebral blood flow alterations in chronic traumatic brain injury, an arterial spin labeling perfusion FMRI study. J Neurotrauma 27(8):1399–1411

    Article  PubMed  Google Scholar 

  • Kou Z, Benson RR, Haacke EM (2008) Susceptibility weighted imaging in traumatic brain injury. In: Gillard J, Waldman A, Barker P (eds) Clinical MR neuroimaging, 2nd edn. Cambridge University, Cambridge

    Google Scholar 

  • Kou Z, Wu Z, Tong KA, Holshouser B, Benson RR, Hu J, Haacke EM (2010) The role of advanced MR imaging findings as biomarkers of traumatic brain injury. J Head Trauma Rehabil 25(4):267–282

    Article  PubMed  Google Scholar 

  • Lam JMK, Hsiang JN, Poon WS (1997) Monitoring autoregulation using laser Doppler flowmetry in patients with head injury. J Neurosurg 86:438–445

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Martin N, Alsina G, McArthur D, Zaucha K, Hovda D, Becker D (1997) Hemodynamically significant cerebral vasospasm and outcome after head injury, a prospective study. J Neurosurg 87(2):221–233

    Article  PubMed  CAS  Google Scholar 

  • Lewine JD, Davis JT, Bigler ED, Thoma R, Hill D, Funke M, Sloan JH, Hall S, Orrison WW (2007) Objective documentation of traumatic brain injury subsequent to mild head trauma, multimodal brain imaging with MEG, SPECT, and MRI. J Head Trauma Rehabil 22(3):141–155

    Article  PubMed  Google Scholar 

  • Li D, Wang Y, Waight DJ (1998) Blood oxygen saturation in vivo using T2* estimation. Magn Reson Med 39(5):685–690

    Article  PubMed  CAS  Google Scholar 

  • Lu H, Ge Y (2008) Quantitative evaluation of oxygenation in venous vessels using T2-relaxation-under-spin-tagging MRI. Magn Reson Med 60(2):357–363

    Article  PubMed  Google Scholar 

  • Menon DK (2003) Procrusts, the traumatic penumbra, and perfusion pressure targets in closed head injury. Anesthesiology 98(4):805–807

    Article  PubMed  Google Scholar 

  • Metting Z, Rodiger LA, de Jong BM, Stewart RE, Kremer BP, van der Naalt J (2010) Acute cerebral perfusion Ct abnormalities associated with posttraumatic amnesia and mild head injury. J Neurotrauma 27(12):2183–2189

    Article  PubMed  Google Scholar 

  • Mintun MA, Lundstrom BN, Snyder AZ (2001) Blood flow and oxygen delivery to human brain during functional activity, theoretical modeling and experimental data. Proc Natl Acad Sci USA 98:6859–6864

    Article  PubMed  CAS  Google Scholar 

  • Monson KL, Barbaro NM, Goldsmith W, Manley G (2000) Static and dynamic mechanical and failure properties of human cerebral vessels. Proc Crashworthiness, Occupant Protection, and Biomechanics in Transportation Systems 49:255–265, AMD- 246/BED-49

    Google Scholar 

  • Muir JK, Boerschel M, Ellis EF (1992) Contineous monitoring of posttraumatic cerebral blood flow using laser-Doppler flowmetry. J Neurotrauma 9(4):355–362

    Article  PubMed  CAS  Google Scholar 

  • Obrist WD, Langfitt TW, Jaggi JL et al (1984) Cerebral blood flow and metabolism in comatose patients with acute head injury, relationship to intracranial hypertension. J Neurosurg 61:241–253

    Article  PubMed  CAS  Google Scholar 

  • Oertel M, Boscardin W, Orbist W, Glenn T, McArthur D, Gravori T, Lee J, Martin N (2005) Posttraumatic vasospasm, the epidemiology, severity, and time course of an underestimated phenomenon, a prospective study performed in 299 patients. J Neurosurg 103(5):812–824

    Article  PubMed  Google Scholar 

  • Parnaik Y, Beillas P, Demetropoulos CK, Hardy WN, Yang KH, King A (2004) The influence of surrogate blood vessels on the impact response of a physical model of the brain. Stapp Car Crash J 48:259–277

    PubMed  Google Scholar 

  • Rafols J, Kreipke CW, Petrov T (2007) Alterations in cerebral cortex microvessels and the microcirculation in a rat model of traumatic brain injury: a correlative EM and laser Doppler flowmetry study. Neurol Res 29(4):339–347

    Article  PubMed  Google Scholar 

  • Schmidt EA, Czosnyka M, Matta BF, Gooskens I, Piechnik S, Pickard JD (2000) Non-invasive cerebral perfusion pressure (nCPP), evaluation of the monitoring methodology in head injured patients. Acta Neurochir Suppl 76:451–452

    PubMed  CAS  Google Scholar 

  • Shen Y, Kou Z, Kreipke CW, Petrov T, Hu J, Haacke EM (2007) In vivo measurement of tissue damage, oxygen saturation changes and blood flow changes after experimental traumatic brain injury in rats using susceptibility weighted imaging. Magn Reson Imaging 25(2):219–227

    Article  PubMed  Google Scholar 

  • Soustiel JF, Mahamid E, Chistyakov A, Shik V, Benenson R, Zaaroor M (2006) Comparison of moderate hyperventilation and mannitol for control of intracranial pressure control in patients with severe traumatic brain injury – a study of cerebral blood flow and metabolism. Acta Neurochir 148:548–551

    Article  Google Scholar 

  • Thomale UW, Kroppenstedt SN, Beyer TF, Schaser KD, Unterberg AW, Stover JF (2002) Temporal profile of cortical perfusion and microcirculation after controlled cortical impact injury in rats. J Neurotrauma 19:403–413

    Article  PubMed  Google Scholar 

  • Tong KA, Aswal S, Obenaus A, Nickerson JP, Kido D, Haacke EM (2008) Susceptibility-weighted MR imaging: a review of clinical applications in children. Am J Neuroradiol 29:9–17

    Article  PubMed  CAS  Google Scholar 

  • Willinger R, Ryan GA, Mclean AJ, Kopp CM (1994) Mechanisms of brain injury related to mathematical modeling and epidemiological data. Accid Anal Prev 26(6):767–779

    Article  PubMed  CAS  Google Scholar 

  • Wintermark M, ChiolĂ©ro R, van Melle G, Revelly JP, Porchet F, Regli L, Meuli R, Schnyder P, Maeder P (2004) Relationship between brain perfusion computed tomography variables and cerebral perfusion pressure in severe head trauma patients. Crit Care Med 32(7):1579–1587

    Article  PubMed  Google Scholar 

  • Wintermark M, Sesay M, Barbier E, Borbely K, Dillon WP, Eastwood JD, Glenn TC, Grandin CB, Pedraza S, Soustiel J, Nariai T, Zaharchuk G, Caille J, Dousset V, Yonas H (2005) Comparative overview of brain perfusion imaging techniques. Stroke 36(9):83–99

    Article  Google Scholar 

  • Wu Z, Li S, Lei J, An D, Haacke EM (2010) Evaluation of traumatic subarachnoid hemorrhage using susceptibility weighted imaging. Am J Neuroradiol 31(7):1302–1310

    Article  PubMed  CAS  Google Scholar 

  • Zaitsu Y, Kudo K, Terae S, Yazu R, Ishizaka K, Fujima N, Tha KK, Haacke EM, Sasaki M, Shirato H (2011) Mapping of cerebral oxygen extraction fraction changes with susceptibility weighted phase imaging. Radiology 261(3):930–936

    Article  PubMed  Google Scholar 

  • Zhang L, Bae J, Hardy WN, Monson KL, Manley GT, Goldsmith W, Yang KH, King AI (2002) Computational study of the contribution of the vasculature on the dynamic response of the brain. Stapp Car Crash J 46:145–164

    PubMed  Google Scholar 

  • Zhao L, Nowak TS Jr (2006) CBF changes associated with focal ischemic preconditioning in the spontaneously hypertensive rat. J Cereb Blood Flow Metab 26(9):1128–1140

    PubMed  CAS  Google Scholar 

  • Zwienenberg M, Muizelaar JP (2001) Cerebral perfusion and blood flow in neurotrauma. Neurol Res 23(2–3):167–174

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Sagar Bush for Fig. 4.8, Tang Jin for Fig. 4.7, Meng Li for Fig. 4.5, and Yongquan Ye for Fig. 4.4, and to Yongquan Ye for reviewing the chapter and Liying Zhang for reviewing the section on finite element methods for studying brain trauma.

This work was supported in part by a grant from the Telemedicine and Advanced Technology Research Center (W81XWH-11-1-0493) and the National Institutes of Health, National Heart and Blood Institute (HL62983).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Haacke PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Haacke, E.M., Raza, W., Wu, B., Kou, Z. (2013). The Presence of Venous Damage and Microbleeds in Traumatic Brain Injury and the Potential Future Role of Angiographic and Perfusion Magnetic Resonance Imaging. In: Kreipke, C., Rafols, J. (eds) Cerebral Blood Flow, Metabolism, and Head Trauma. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4148-9_4

Download citation

Publish with us

Policies and ethics