Skip to main content

Denaturant-Induced Conformational Transitions in Intrinsically Disordered Proteins

  • Protocol
  • First Online:
Book cover Intrinsically Disordered Protein Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 896))

Abstract

Intrinsically disordered proteins (IDPs) differ from ordered proteins at several levels: structural, functional, and conformational. Amino acid biases also drive atypical responses of IDPs to changes in their environment. Among several specific features, the conformational behavior of IDPs is characterized by the low cooperativity (or the complete lack thereof) of the denaturant-induced unfolding. In fact, the denaturant-induced unfolding of native molten globules can be described by shallow sigmoidal curves, whereas urea- or guanidinium hydrochloride-induced unfolding of native pre-molten globules or native coils is a noncooperative process and typically is seen as monotonous feature-less changes in the studied parameters. This chapter describes some of the most characteristic features of the IDP conformational behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wright PE, Dyson HJ (1999) Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J Mol Biol 293:321–331

    Article  PubMed  CAS  Google Scholar 

  2. Dunker AK, Lawson JD, Brown CJ, Williams RM, Romero P, Oh JS, Oldfield CJ, Campen AM, Ratliff CM, Hipps KW, Ausio J, Nissen MS, Reeves R, Kang C, Kissinger CR, Bailey RW, Griswold MD, Chiu W, Garner EC, Obradovic Z (2001) Intrinsically disordered protein. J Mol Graph Model 19:26–59

    Article  PubMed  CAS  Google Scholar 

  3. Dunker AK, Obradovic Z (2001) The protein trinity – linking function and disorder. Nat Biotechnol 19:805–806

    Article  PubMed  CAS  Google Scholar 

  4. Dunker AK, Brown CJ, Lawson JD, Iakoucheva LM, Obradovic Z (2002) Intrinsic disorder and protein function. Biochemistry 41:6573–6582

    Article  PubMed  CAS  Google Scholar 

  5. Dunker AK, Brown CJ, Obradovic Z (2002) Identification and functions of usefully disordered proteins. Adv Protein Chem 62:25–49

    Article  PubMed  CAS  Google Scholar 

  6. Uversky VN (2003) Protein folding revisited. A polypeptide chain at the folding-misfolding-nonfolding cross-roads: which way to go? Cell Mol Life Sci 60:1852–1871

    Article  PubMed  CAS  Google Scholar 

  7. Uversky VN (2002) Natively unfolded proteins: a point where biology waits for physics. Protein Sci 11:739–756

    Article  PubMed  CAS  Google Scholar 

  8. Uversky VN (2002) What does it mean to be natively unfolded? Eur J Biochem 269:2–12

    Article  PubMed  CAS  Google Scholar 

  9. Dunker AK, Cortese MS, Romero P, Iakoucheva LM, Uversky VN (2005) Flexible nets. The roles of intrinsic disorder in protein interaction networks. FEBS J 272:5129–5148

    Article  PubMed  CAS  Google Scholar 

  10. Uversky VN, Oldfield CJ, Dunker AK (2005) Showing your ID: intrinsic disorder as an ID for recognition, regulation and cell signaling. J Mol Recognit 18:343–384

    Article  PubMed  CAS  Google Scholar 

  11. Radivojac P, Iakoucheva LM, Oldfield CJ, Obradovic Z, Uversky VN, Dunker AK (2007) Intrinsic disorder and functional proteomics. Biophys J 92:1439–1456

    Article  PubMed  CAS  Google Scholar 

  12. Dunker AK, Oldfield CJ, Meng J, Romero P, Yang JY, Chen JW, Vacic V, Obradovic Z, Uversky VN (2008) The unfoldomics decade: an update on intrinsically disordered proteins. BMC Genomics 9 Suppl 2: S1

    Google Scholar 

  13. Anfinsen CB, Haber E, Sela M, White FH Jr (1961) The kinetics of formation of native ribonuclease during oxidation of the reduced polypeptide chain. Proc Natl Acad Sci USA 47:1309–1314

    Article  PubMed  CAS  Google Scholar 

  14. Anson ML, Mirsky AE (1932) The effect of denaturation on the viscosity of protein systems. J Gen Physiol 15:341–350

    Article  PubMed  CAS  Google Scholar 

  15. Mirsky AE, Pauling L (1936) On the structure of native, denatured and coagulated proteins. Proc Natl Acad Sci USA 22:439–447

    Article  PubMed  CAS  Google Scholar 

  16. Neurath H, Greenstein JP, Putnam FW, Erickson JO (1944) The chemistry of protein denaturation. Chem Rev 34:157–265

    Article  CAS  Google Scholar 

  17. Tanford C (1968) Protein denaturation. Adv Protein Chem 23:121–282

    Article  PubMed  CAS  Google Scholar 

  18. Uversky VN, Ptitsyn OB (1994) “Partly folded” state, a new equilibrium state of protein molecules: four-state guanidinium chloride-induced unfolding of beta-lactamase at low temperature. Biochemistry 33:2782–2791

    Article  PubMed  CAS  Google Scholar 

  19. Ptitsyn OB (1995) Structures of folding intermediates. Curr Opin Struct Biol 5:74–78

    Article  PubMed  CAS  Google Scholar 

  20. Ptitsyn OB (1995) Molten globule and protein folding. Adv Protein Chem 47:83–229

    Article  PubMed  CAS  Google Scholar 

  21. Uversky VN, Ptitsyn OB (1996) Further evidence on the equilibrium “pre-molten globule state”: four-state guanidinium chloride-induced unfolding of carbonic anhydrase B at low temperature. J Mol Biol 255:215–228

    Article  PubMed  CAS  Google Scholar 

  22. Uversky VN, Karnoup AS, Segel DJ, Seshadri S, Doniach S, Fink AL (1998) Anion-induced folding of Staphylococcal nuclease: characterization of multiple equilibrium partially folded intermediates. J Mol Biol 278:879–894

    Article  PubMed  CAS  Google Scholar 

  23. Uversky VN, Fink AL (1999) Do protein molecules have a native-like topology in the pre-molten globule state? Biochemistry (Mosc) 64:552–555

    CAS  Google Scholar 

  24. Tcherkasskaya O, Uversky VN (2001) Denatured collapsed states in protein folding: example of apomyoglobin. Proteins 44:244–254

    Article  PubMed  CAS  Google Scholar 

  25. Eliezer D, Chiba K, Tsuruta H, Doniach S, Hodgson KO, Kihara H (1993) Evidence of an associative intermediate on the myoglobin refolding pathway. Biophys J 65:912–917

    Article  PubMed  CAS  Google Scholar 

  26. Kataoka M, Hagihara Y, Mihara K, Goto Y (1993) Molten globule of cytochrome c studied by small angle X-ray scattering. J Mol Biol 229:591–596

    Article  PubMed  CAS  Google Scholar 

  27. Kataoka M, Kuwajima K, Tokunaga F, Goto Y (1997) Structural characterization of the molten globule of alpha-lactalbumin by solution X-ray scattering. Protein Sci 6:422–430

    Article  PubMed  CAS  Google Scholar 

  28. Semisotnov GV, Kihara H, Kotova NV, Kimura K, Amemiya Y, Wakabayashi K, Serdyuk IN, Timchenko AA, Chiba K, Nikaido K, Ikura T, Kuwajima K (1996) Protein globularization during folding. A study by synchrotron small-angle X-ray scattering. J Mol Biol 262:559–574

    Article  PubMed  CAS  Google Scholar 

  29. Baum J, Dobson CM, Evans PA, Hanley C (1989) Characterization of a partly folded protein by NMR methods: studies on the molten globule state of guinea pig alpha-lactalbumin. Biochemistry 28:7–13

    Article  PubMed  CAS  Google Scholar 

  30. Bushnell GW, Louie GV, Brayer GD (1990) High-resolution three-dimensional structure of horse heart cytochrome c. J Mol Biol 214:585–595

    Article  PubMed  CAS  Google Scholar 

  31. Chyan CL, Wormald C, Dobson CM, Evans PA, Baum J (1993) Structure and stability of the molten globule state of guinea-pig alpha-lactalbumin: a hydrogen exchange study. Biochemistry 32:5681–5691

    Article  PubMed  CAS  Google Scholar 

  32. Jeng MF, Englander SW, Elove GA, Wand AJ, Roder H (1990) Structural description of acid-denatured cytochrome c by hydrogen exchange and 2D NMR. Biochemistry 29:10433–10437

    Article  PubMed  CAS  Google Scholar 

  33. Bose HS, Whittal RM, Baldwin MA, Miller WL (1999) The active form of the steroidogenic acute regulatory protein, StAR, appears to be a molten globule. Proc Natl Acad Sci USA 96:7250–7255

    Article  PubMed  CAS  Google Scholar 

  34. Bracken C (2001) NMR spin relaxation methods for characterization of disorder and folding in proteins. J Mol Graph Model 19:3–12

    Article  PubMed  CAS  Google Scholar 

  35. Eliezer D, Yao J, Dyson HJ, Wright PE (1998) Structural and dynamic characterization of partially folded states of apomyoglobin and implications for protein folding. Nat Struct Biol 5:148–155

    Article  PubMed  CAS  Google Scholar 

  36. Wu LC, Laub PB, Elove GA, Carey J, Roder H (1993) A noncovalent peptide complex as a model for an early folding intermediate of cytochrome c. Biochemistry 32:10271–10276

    Article  PubMed  CAS  Google Scholar 

  37. Merrill AR, Cohen FS, Cramer WA (1990) On the nature of the structural change of the colicin E1 channel peptide necessary for its translocation-competent state. Biochemistry 29:5829–5836

    Article  PubMed  CAS  Google Scholar 

  38. Fontana A, Polverino de Laureto P, De Philipps V (1993) Molecular aspects of proteolysis of globular proteins. In: van den Tweel W, Harder A, Buitelear M (eds) Protein stability and stabilization. Elsevier, Amsterdam, pp 101–110

    Google Scholar 

  39. Semisotnov GV, Rodionova NA, Razgulyaev OI, Uversky VN, Gripas AF, Gilmanshin RI (1991) Study of the “molten globule” intermediate state in protein folding by a hydrophobic fluorescent probe. Biopolymers 31:119–128

    Article  PubMed  CAS  Google Scholar 

  40. Uversky VN, Winter S, Lober G (1996) Use of fluorescence decay times of 8-ANS-protein complexes to study the conformational transitions in proteins which unfold through the molten globule state. Biophys Chem 60:79–88

    Article  PubMed  CAS  Google Scholar 

  41. Uversky VN (1993) Use of fast protein size-exclusion liquid chromatography to study the unfolding of proteins which denature through the molten globule. Biochemistry 32:13288–13298

    Article  PubMed  CAS  Google Scholar 

  42. Romero P, Obradovic Z, Li X, Garner EC, Brown CJ, Dunker AK (2001) Sequence complexity of disordered protein. Proteins 42:38–48

    Article  PubMed  CAS  Google Scholar 

  43. Williams RM, Obradovi Z, Mathura V, Braun W, Garner EC, Young J, Takayama S, Brown CJ, Dunker AK (2001) The protein non-folding problem: amino acid determinants of intrinsic order and disorder. Pac Symp Biocomput, 89–100

    Google Scholar 

  44. Daughdrill GW, Pielak GJ, Uversky VN, Cortese MS, Dunker AK (2005) Natively disordered proteins. In: Buchner J, Kiefhaber T (eds) Handbook of protein folding. Wiley-VCH, Weinheim, Germany, pp 271–353

    Google Scholar 

  45. Vacic V, Uversky VN, Dunker AK, Lonardi S (2007) Composition profiler: a tool for discovery and visualization of amino acid composition differences. BMC Bioinformatics 8:211

    Article  PubMed  Google Scholar 

  46. Uversky VN, Gillespie JR, Fink AL (2000) Why are “natively unfolded” proteins unstructured under physiologic conditions? Proteins 41:415–427

    Article  PubMed  CAS  Google Scholar 

  47. Zambelli B, Stola M, Musiani F, De Vriendt K, Samyn B, Devreese B, Van Beeumen J, Turano P, Dikiy A, Bryant DA, Ciurli S (2005) UreG, a chaperone in the urease assembly process, is an intrinsically unstructured GTPase that specifically binds Zn++. J Biol Chem 280:4684–4695

    Article  PubMed  CAS  Google Scholar 

  48. Eftink MR (1994) The use of fluorescence methods to monitor unfolding transitions in proteins. Biophys J 66:482–501

    Article  PubMed  CAS  Google Scholar 

  49. Simeoni F, Masotti L, Neyroz P (2001) Structural role of proline residues of the β-hinge region of p13suc1 as revealed by site-directed mutagenesis and fluorescence studies. Biochemistry 40:8030–8042

    Article  PubMed  CAS  Google Scholar 

  50. Lakowicz JR (1999) Principle of fluorescence spectroscopy. Plenum Publishing, New York

    Google Scholar 

  51. Pace CN (1986) Determination and analysis of urea and guanidine hydrochloride denaturation curves. Methods Enzymol 131:266–280

    Article  PubMed  CAS  Google Scholar 

  52. Neyroz P, Zambelli B, Ciurli S (2006) Intrinsically disordered structure of Bacillus pasteurii UreG as revealed by steady-state and time-resolved fluorescence spectroscopy. Biochemistry 45:8918–8930

    Article  PubMed  CAS  Google Scholar 

  53. Goldenberg DP, Creighton TE (1984) Gel electrophoresis in studies of protein conformation and folding. Anal Biochem 138:1–18

    Article  PubMed  CAS  Google Scholar 

  54. Uversky VN (1994) Gel-permeation chromatography as a unique instrument for quantitative and qualitative analysis of protein denaturation and unfolding. Int J Bio-Chromatogr 1:103–114

    CAS  Google Scholar 

  55. Corbett RJ, Roche RS (1983) The unfolding mechanism of thermolysin. Biopolymers 22:101–105

    Article  PubMed  CAS  Google Scholar 

  56. Corbett RJ, Roche RS (1984) Use of high-speed size-exclusion chromatography for the study of protein folding and stability. Biochemistry 23:1888–1894

    Article  PubMed  CAS  Google Scholar 

  57. Uversky VN, Semisotnov GV, Pain RH, Ptitsyn OB (1992) ‘All-or-none’ mechanism of the molten globule unfolding. FEBS Lett 314:89–92

    Article  PubMed  CAS  Google Scholar 

  58. Georlette D, Blaise V, Dohmen C, Bouillenne F, Damien B, Depiereux E, Gerday C, Uversky VN, Feller G (2003) Cofactor binding modulates the conformational stabilities and unfolding patterns of NAD(+)-dependent DNA ligases from Escherichia coli and Thermus scotoductus. J Biol Chem 278:49945–49953

    Article  PubMed  CAS  Google Scholar 

  59. Privalov PL (1979) Stability of proteins: small globular proteins. Adv Protein Chem 33:167–241

    Article  PubMed  CAS  Google Scholar 

  60. Ptitsyn OB, Uversky VN (1994) The molten globule is a third thermodynamical state of protein molecules. FEBS Lett 341:15–18

    Article  PubMed  CAS  Google Scholar 

  61. Uversky VN, Ptitsyn OB (1996) All-or-none solvent-induced transitions between native, molten globule and unfolded states in globular proteins. Fold Des 1:117–122

    Article  PubMed  CAS  Google Scholar 

  62. Ptitsyn OB (1987) Protein folding: hypotheses and experiments. J Prot Chem 6:273–293

    Article  CAS  Google Scholar 

  63. Kuwajima K (1989) The molten globule state as a clue for understanding the folding and cooperativity of globular-protein structure. Proteins 6:87–103

    Article  PubMed  CAS  Google Scholar 

  64. Christensen H, Pain RH (1991) Molten globule intermediates and protein folding. Eur Biophys J 19:221–229

    Article  PubMed  CAS  Google Scholar 

  65. Rodionova NA, Semisotnov GV, Kutyshenko VP, Uverskii VN, Bolotina IA (1989) Staged equilibrium of carbonic anhydrase unfolding in strong denaturants. Mol Biol (Mosk) 23:683–692

    CAS  Google Scholar 

  66. Hill TL (1963-1964) Thermodynamics of the small systems. Wiley, New York

    Google Scholar 

  67. Grosberg AY, Khokhlov AR (1989) Statistical physics of macromolecules. Nauka, Moscow

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stefano Ciurli or Vladimir N. Uversky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Neyroz, P., Ciurli, S., Uversky, V.N. (2012). Denaturant-Induced Conformational Transitions in Intrinsically Disordered Proteins. In: Uversky, V., Dunker, A. (eds) Intrinsically Disordered Protein Analysis. Methods in Molecular Biology, vol 896. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3704-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3704-8_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3703-1

  • Online ISBN: 978-1-4614-3704-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics