Skip to main content

The Inheritance of p53

  • Chapter
  • First Online:
p53 in the Clinics

Abstract

The p53 pathway constitutes a major cellular gene network that is crucial in directing the suppression of cancer formation, mediating the response to commonly used cancer therapies, as well as the regulation of germline maintenance, fertility, and reproduction. It has been demonstrated that various cancer predisposition syndromes are caused by low-frequency, highly penetrant inherited mutations in the p53 network, the knowledge of which is already positively affecting patient survival. Mounting evidence from studies utilizing human material, patient cohorts, and mouse models suggests that higher frequency, lesser penetrant genetic variants can also affect p53 signaling, resulting in differences in cancer risk, prognosis, response to therapies, and/or natural selection. Indeed, multiple genes in the p53 network have been shown to harbor functional single nucleotide polymorphisms (SNPs). Comprehensive analyses of two SNPs have demonstrated that their effects on cancer can be modified by factors such as gender, estrogen, and other p53 pathway SNPs. Together these insights suggest that genetic variants in the p53 network could present an excellent opportunity to further define individuals in their abilities to react to stress, suppress tumor formation, and respond to therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achatz MI, Hainaut P, Ashton-Prolla P (2009) Highly prevalent TP53 mutation predisposing to many cancers in the Brazilian population: a case for newborn screening? Lancet Oncol 10:920–925. doi: S1470-2045(09)70089-0 [pii] 10.1016/S1470-2045(09)70089-0

    PubMed  Google Scholar 

  • Achatz MI, Olivier M, Le Calvez F et al (2007) The TP53 mutation, R337H, is associated with Li-Fraumeni and Li-Fraumeni-like syndromes in Brazilian families. Cancer Lett 245:96–102. doi: S0304-3835(06)00005-X [pii] 10.1016/j.canlet.2005.12.039

    PubMed  CAS  Google Scholar 

  • Alhopuro P, Ylisaukko-Oja SK, Koskinen WJ et al (2005) The MDM2 promoter polymorphism SNP309T–>G and the risk of uterine leiomyosarcoma, colorectal cancer, and squamous cell carcinoma of the head and neck. J Med Genet 42:694–698

    PubMed  CAS  Google Scholar 

  • Alimonti A, Carracedo A, Clohessy JG et al (2010) Subtle variations in Pten dose determine cancer susceptibility. Nat Genet 42:454–458. doi: ng.556 [pii] 10.1038/ng.556

    PubMed  CAS  Google Scholar 

  • American College of Medical Genetics Board of Directors (1995) Points to consider: ethical, legal, and psychosocial implications of genetic testing in children and adolescents. American Society of Human Genetics Board of Directors, American College of Medical Genetics Board of Directors. Am J Hum Genet 57:1233–1241

    Google Scholar 

  • Atwal GS, Bond GL, Metsuyanim S et al (2007) Haplotype structure and selection of the MDM2 oncogene in humans. Proc Natl Acad Sci USA 104:4524–4529

    PubMed  CAS  Google Scholar 

  • Atwal GS, Kirchhoff T, Bond EE et al (2009) Altered tumor formation and evolutionary selection of genetic variants in the human MDM4 oncogene. Proc Natl Acad Sci USA 106:10236–10241

    PubMed  CAS  Google Scholar 

  • Bandele OJ, Wang X, Campbell MR et al (2011) Human single-nucleotide polymorphisms alter p53 sequence-specific binding at gene regulatory elements. Nucleic Acids Res 39:178–189

    PubMed  CAS  Google Scholar 

  • Bartel F, Jung J, Bohnke A et al (2008) Both germ line and somatic genetics of the p53 pathway affect ovarian cancer incidence and survival. Clin Cancer Res 14:89–96

    PubMed  CAS  Google Scholar 

  • Belyi VA, Ak P, Markert E et al (2010) The origins and evolution of the p53 family of genes. Cold Spring Harb Perspect Biol 2:a001198. doi: cshperspect.a001198 [pii] 10.1101/cshperspect.a001198

    PubMed  Google Scholar 

  • Bittenbring J, Parisot F, Wabo A et al (2008) MDM2 gene SNP309 T/G and p53 gene SNP72 G/C do not influence diffuse large B-cell non-Hodgkin lymphoma onset or survival in central European Caucasians. BMC Cancer 8:116

    PubMed  Google Scholar 

  • Blanco-Aparicio C, Renner O, Leal JF et al (2007) PTEN, more than the AKT pathway. Carcinogenesis 28:1379–1386. doi: bgm052 [pii] 10.1093/carcin/bgm052

    PubMed  CAS  Google Scholar 

  • Bolderson E, Richard DJ, Zhou BB et al (2009) Recent advances in cancer therapy targeting ­proteins involved in DNA double-strand break repair. Clin Cancer Res 15:6314–6320. doi: 1078-0432.CCR-09-0096 [pii] 10.1158/1078-0432.CCR-09-0096

    PubMed  CAS  Google Scholar 

  • Bond GL, Hirshfield KM, Kirchhoff T et al (2006a) MDM2 SNP309 accelerates tumor formation in a gender-specific and hormone-dependent manner. Cancer Res 66:5104–5110

    PubMed  CAS  Google Scholar 

  • Bond GL, Hu W, Bond EE et al (2004) A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans. Cell 119:591–602

    PubMed  CAS  Google Scholar 

  • Bond GL, Levine AJ (2007) A single nucleotide polymorphism in the p53 pathway interacts with gender, environmental stresses and tumor genetics to influence cancer in humans. Oncogene 26:1317–1323

    PubMed  CAS  Google Scholar 

  • Bond GL, Menin C, Bertorelle R et al (2006b) MDM2 SNP309 accelerates colorectal tumour formation in women. J Med Genet 43:950–952

    PubMed  CAS  Google Scholar 

  • Bougeard G, Baert-Desurmont S, Tournier I et al (2006) Impact of the MDM2 SNP309 and p53 Arg72Pro polymorphism on age of tumour onset in Li-Fraumeni syndrome. J Med Genet 43:531–533

    PubMed  CAS  Google Scholar 

  • Buchman VL, Chumakov PM, Ninkina NN et al (1988) A variation in the structure of the protein-coding region of the human p53 gene. Gene 70:245–252

    PubMed  CAS  Google Scholar 

  • Committee on Bioethics (2001) Ethical issues with genetic testing in pediatrics. Pediatrics 107:1451–1455

    Google Scholar 

  • Di Cristofano A, Pesce B, Cordon-Cardo C et al (1998) Pten is essential for embryonic development and tumour suppression. Nat Genet 19:348–355

    PubMed  Google Scholar 

  • Donehower LA, Harvey M, Slagle BL et al (1992) Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356:215–221

    PubMed  CAS  Google Scholar 

  • Donehower LA, Lozano G (2009) 20 years studying p53 functions in genetically engineered mice. Nat Rev Cancer 9:831–841

    PubMed  CAS  Google Scholar 

  • Evans DG, Lunt P, Clancy T et al (2010) Childhood predictive genetic testing for Li-Fraumeni syndrome. Fam Cancer 9:65–69. doi: 10.1007/s10689-009-9245-9

    PubMed  CAS  Google Scholar 

  • Fang F, Yu XJ, Yu L et al (2011) MDM2 309 T/G polymorphism is associated with colorectal cancer risk especially in Asians: a meta-analysis. Med Oncol 28(4):981–985

    PubMed  Google Scholar 

  • Fang Y, Kong B, Yang Q et al (2009) MDM2 309 polymorphism is associated with missed abortion. Hum Reprod 24:1346–1349

    PubMed  CAS  Google Scholar 

  • Feuk L, Carson AR, Scherer SW (2006) Structural variation in the human genome. Nat Rev Genet 7:85–97. doi: nrg1767 [pii] 10.1038/nrg1767

    PubMed  CAS  Google Scholar 

  • Firouzabadi RD, Ghasemi N, Rozbahani MA et al (2009) Association of p53 polymorphism with ICSI/IVF failure and recurrent pregnancy loss. Aust NZ J Obstet Gynaecol 49:216–219

    Google Scholar 

  • Firoz EF, Warycha M, Zakrzewski J et al (2009) Association of MDM2 SNP309, age of onset, and gender in cutaneous melanoma. Clin Cancer Res 15:2573–2580

    PubMed  CAS  Google Scholar 

  • Frank AK, Leu JI, Zhou Y et al (2011) The codon 72 polymorphism of p53 regulates interaction with NF-{kappa}B and transactivation of genes involved in immunity and inflammation. Mol Cell Biol 31:1201–1213

    PubMed  CAS  Google Scholar 

  • Frazer KA, Murray SS, Schork NJ et al (2009) Human genetic variation and its contribution to complex traits. Nat Rev Genet 10:241–251. doi: nrg2554 [pii] 10.1038/nrg2554

    PubMed  CAS  Google Scholar 

  • Freeman DJ, Li AG, Wei G et al (2003) PTEN tumor suppressor regulates p53 protein levels and activity through phosphatase-dependent and -independent mechanisms. Cancer Cell 3:117–130

    PubMed  CAS  Google Scholar 

  • Gonzalez KD, Noltner KA, Buzin CH et al (2009) Beyond Li Fraumeni syndrome: clinical ­characteristics of families with p53 germline mutations. J Clin Oncol 27:1250–1256. doi: JCO.2008.16.6959 [pii] 10.1200/JCO.2008.16.6959

    PubMed  CAS  Google Scholar 

  • Grochola LF, Vazquez A, Bond EE et al (2009) Recent natural selection identifies a genetic variant in a regulatory subunit of protein phosphatase 2a that associates with altered cancer risk and survival. Clin Cancer Res 15(19):6301–6308

    Google Scholar 

  • Grochola LF, Muller TH, Bond GL et al (2010) MDM2 SNP309 associates with accelerated ­pancreatic adenocarcinoma formation. Pancreas 39(1):76–80

    Google Scholar 

  • Grochola LF, Zeron-Medina J, Meriaux S et al (2010) Single-nucleotide polymorphisms in the p53 signaling pathway. Cold Spring Harb Perspect Biol 2:a001032. doi: cshperspect.a001032 [pii] 10.1101/cshperspect.a001032

    PubMed  Google Scholar 

  • Hartmann LC, Schaid DJ, Woods JE et al (1999) Efficacy of bilateral prophylactic mastectomy in women with a family history of breast cancer. N Engl J Med 340:77–84. doi: 10.1056/NEJM199901143400201

    PubMed  CAS  Google Scholar 

  • Hisada M, Garber JE, Fung CY et al (1998) Multiple primary cancers in families with Li-Fraumeni syndrome. J Natl Cancer Inst 90:606–611

    PubMed  CAS  Google Scholar 

  • Hu W (2009) The role of p53 gene family in reproduction. Cold Spring Harb Perspect Biol 1:a001073. doi:cshperspect.a001073 [pii] 10.1101/cshperspect.a001073

    PubMed  Google Scholar 

  • Hu W, Feng Z, Atwal GS et al (2008) p53: a new player in reproduction. Cell Cycle 7:848–852

    PubMed  CAS  Google Scholar 

  • Hu W, Feng Z, Teresky AK et al (2007a) p53 regulates maternal reproduction through LIF. Nature 450:721–724

    PubMed  CAS  Google Scholar 

  • Hu Z, Jin G, Wang L et al (2007b) MDM2 promoter polymorphism SNP309 contributes to tumor susceptibility: evidence from 21 case-control studies. Cancer Epidemiol Biomarkers Prev 16:2717–2723

    PubMed  CAS  Google Scholar 

  • Huarte M, Guttman M, Feldser D et al (2010) A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell 142:409–419. doi: S0092-8674(10)00730-0 [pii] 10.1016/j.cell.2010.06.040

    PubMed  CAS  Google Scholar 

  • International HapMap Consortium (2003) The International HapMap Project. Nature 426:789–796. doi:10.1038/nature02168 nature02168 [pii]

    Google Scholar 

  • Johnstone RW, Ruefli AA, Lowe SW (2002) Apoptosis: a link between cancer genetics and ­chemotherapy. Cell 108:153–164

    PubMed  CAS  Google Scholar 

  • Jordan VC (2006) Tamoxifen (ICI46,474) as a targeted therapy to treat and prevent breast cancer. Br J Pharmacol 147(Suppl 1):S269–276. doi: 0706399 [pii] 10.1038/sj.bjp. 0706399

    PubMed  CAS  Google Scholar 

  • Joshi AM, Budhathoki S, Ohnaka K et al (2011) TP53 R72P and MDM2 SNP309 polymorphisms and colorectal cancer risk: the Fukuoka colorectal cancer study. Jpn J Clin Oncol 41:232–238

    PubMed  Google Scholar 

  • Kang HJ, Feng Z, Sun Y et al (2009) Single-nucleotide polymorphisms in the p53 pathway regulate fertility in humans. Proc Natl Acad Sci USA 106:9761–9766

    PubMed  CAS  Google Scholar 

  • Kay C, Jeyendran RS, Coulam CB (2006) p53 tumour suppressor gene polymorphism is associated with recurrent implantation failure. Reprod Biomed Online 13:492–496

    PubMed  CAS  Google Scholar 

  • Kelley JL, Swanson WJ (2008) Positive selection in the human genome: from genome scans to biological significance. Annu Rev Genomics Hum Genet 9:143–160. doi: 10.1146/annurev.genom.9.081307.164411

    PubMed  CAS  Google Scholar 

  • Knappskog S, Bjornslett M, Myklebust LM et al (2011) The MDM2 promoter SNP285C/309G haplotype diminishes Sp1 transcription factor binding and reduces risk for breast and ovarian cancer in Caucasians. Cancer Cell 19:273–282

    PubMed  CAS  Google Scholar 

  • Kraemer KH, Lee MM, Andrews AD et al (1994) The role of sunlight and DNA repair in melanoma and nonmelanoma skin cancer. The xeroderma pigmentosum paradigm. Arch Dermatol 130:1018–1021

    PubMed  CAS  Google Scholar 

  • Ku CS, Loy EY, Salim A et al (2010) The discovery of human genetic variations and their use as disease markers: past, present and future. J Hum Genet 55:403–415. doi: jhg201055 [pii] 10.1038/jhg.2010.55

    PubMed  Google Scholar 

  • Kulkarni DA, Vazquez A, Haffty BG et al (2009) A polymorphic variant in human MDM4 associates with accelerated age of onset of estrogen receptor negative breast cancer. Carcinogenesis 30:1910–1915

    PubMed  CAS  Google Scholar 

  • Lalloo F, Varley J, Ellis D et al (2003) Prediction of pathogenic mutations in patients with early-onset breast cancer by family history. Lancet 361:1101–1102. doi: S0140-6736(03)12856-5 [pii] 10.1016/S0140-6736(03)12856-5

    PubMed  CAS  Google Scholar 

  • Lane D, Levine A (2010) p53 Research: the past thirty years and the next thirty years. Cold Spring Harb Perspect Biol 2:a000893. doi: cshperspect.a000893 [pii] 10.1101/cshperspect.a000893

    PubMed  CAS  Google Scholar 

  • Li AG, Piluso LG, Cai X et al (2006) Mechanistic insights into maintenance of high p53 acetylation by PTEN. Mol Cell 23:575–587. doi: S1097-2765(06)00456-4 [pii] 10.1016/j.molcel.2006.06.028

    PubMed  Google Scholar 

  • Li FP (1995) Identification and management of inherited cancer susceptibility. Environ Health Perspect 103(Suppl 8):297–300

    PubMed  Google Scholar 

  • Liaw D, Marsh DJ, Li J et al (1997) Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nat Genet 16:64–67

    PubMed  CAS  Google Scholar 

  • Limacher JM, Frebourg T, Natarajan-Ame S et al (2001) Two metachronous tumors in the radiotherapy fields of a patient with Li-Fraumeni syndrome. Int J Cancer 96:238–242. doi: 10.1002/ijc.1021 [pii]

    PubMed  CAS  Google Scholar 

  • Lind H, Zienolddiny S, Ekstrom PO et al (2006) Association of a functional polymorphism in the promoter of the MDM2 gene with risk of nonsmall cell lung cancer. Int J Cancer 119:718–721

    PubMed  CAS  Google Scholar 

  • Lowe SW, Lin AW (2000) Apoptosis in cancer. Carcinogenesis 21(3):485–495

    PubMed  CAS  Google Scholar 

  • Lozano G (2010) Mouse models of p53 functions. Cold Spring Harb Perspect Biol 2:a001115. doi: cshperspect.a001115 [pii] 10.1101/cshperspect.a001115

    PubMed  Google Scholar 

  • Lu X (2010) Tied up in loops: positive and negative autoregulation of p53. Cold Spring Harb Perspect Biol 2:a000984. doi: cshperspect.a000984 [pii] 10.1101/cshperspect.a000984

    PubMed  Google Scholar 

  • MacCallum C, Hill E (2006) Being positive about selection. PLoS Biol 4:e87. doi: 06-PLBI-ED-0101 [pii] 10.1371/journal.pbio.0040087

    PubMed  Google Scholar 

  • Manfredi JJ (2010) The Mdm2-p53 relationship evolves: Mdm2 swings both ways as an oncogene and a tumor suppressor. Genes Dev 24:1580–1589. doi: 24/15/1580 [pii] 10.1101/gad.1941710

    PubMed  CAS  Google Scholar 

  • Marcel V, Palmero EI, Falagan-Lotsch P et al (2009) TP53PIN3 and MDM2 SNP309 polymorphisms as genetic modifiers in the Li-Fraumeni syndrome: impact on age at first diagnosis. J Med Genet 46:766–772

    PubMed  CAS  Google Scholar 

  • Marsh DJ, Dahia PL, Zheng Z et al (1997) Germline mutations in PTEN are present in Bannayan-Zonana syndrome. Nat Genet 16:333–334

    PubMed  CAS  Google Scholar 

  • Mayo LD, Donner DB (2001) A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc Natl Acad Sci USA 98:11598–11603

    PubMed  CAS  Google Scholar 

  • McKinnon PJ (2004) ATM and ataxia telangiectasia. EMBO Rep 5:772–776. doi: 10.1038/sj.embor.7400210 7400210 [pii]

    PubMed  CAS  Google Scholar 

  • Mehta MS, Vazquez A, Kulkarni DA et al (2011) Polymorphic variants in TSC1 and TSC2 and their association with breast cancer phenotypes. Breast Cancer Res Treat 125:861–868. doi: 10.1007/s10549-010-1062-1

    PubMed  CAS  Google Scholar 

  • Mendrysa SM, McElwee MK, Michalowski J et al (2003) mdm2 Is critical for inhibition of p53 during lymphopoiesis and the response to ionizing irradiation. Mol Cell Biol 23:462–472

    PubMed  CAS  Google Scholar 

  • Mendrysa SM, O’Leary KA, McElwee MK et al (2006) Tumor suppression and normal aging in mice with constitutively high p53 activity. Genes Dev 20:16–21

    PubMed  CAS  Google Scholar 

  • Miyoshi H, Nakau M, Ishikawa TO et al (2002) Gastrointestinal hamartomatous polyposis in Lkb1 heterozygous knockout mice. Cancer Res 62:2261–2266

    PubMed  CAS  Google Scholar 

  • Moll UM, Wolff S, Speidel D et al (2005) Transcription-independent pro-apoptotic functions of p53. Curr Opin Cell Biol 17:631–636. doi: S0955-0674(05)00146-8 [pii] 10.1016/j.ceb.2005.09.007

    PubMed  CAS  Google Scholar 

  • Neale BM (2010) Introduction to linkage disequilibrium, the HapMap, and imputation. Cold Spring Harb Protoc 2010: pdb top74. doi:2010/3/pdb.top74[pii]10.1101/pdb.top74

    Google Scholar 

  • Noureddine MA, Menendez D, Campbell MR et al (2009) Probing the functional impact of sequence variation on p53-DNA interactions using a novel microsphere assay for protein-DNA binding with human cell extracts. PLoS Genet 5:e1000462

    PubMed  Google Scholar 

  • Ogawara Y, Kishishita S, Obata T et al (2002) Akt enhances Mdm2-mediated ubiquitination and degradation of p53. J Biol Chem 277:21843–21850. doi: 10.1074/jbc.M109745200 M109745200 [pii]

    PubMed  CAS  Google Scholar 

  • Olivier M, Hollstein M, Hainaut P (2010) TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol 2:a001008. doi: 10.1101/cshperspect.a001008

    PubMed  Google Scholar 

  • Orlova KA, Crino PB (2010) The tuberous sclerosis complex. Ann NY Acad Sci 1184:87–105. doi: NYAS5117 [pii]10.1111/j.1749-6632.2009.05117.x

    PubMed  CAS  Google Scholar 

  • Park SH, Choi JE, Kim EJ et al (2006) MDM2 309T>G polymorphism and risk of lung cancer in a Korean population. Lung Cancer 54:19–24

    PubMed  Google Scholar 

  • Phang BH, Sabapathy K (2007) The codon 72 polymorphism-specific effects of human p53 are absent in mouse cells: implications on generation of mouse models. Oncogene 26:2964–2974

    PubMed  CAS  Google Scholar 

  • Phillips CL, Gerbing R, Alonzo T et al (2010) MDM2 polymorphism increases susceptibility to childhood acute myeloid leukemia: a report from the Children’s Oncology Group. Pediatr Blood Cancer 55:248–253. doi: 10.1002/pbc.22519

    PubMed  Google Scholar 

  • Post SM, Quintas-Cardama A, Pant V et al (2010) A high-frequency regulatory polymorphism in the p53 pathway accelerates tumor development. Cancer Cell 18:220–230

    PubMed  CAS  Google Scholar 

  • Reed JC (1999) Dysregulation of apoptosis in cancer. J Clin Oncol 17(9):2941–2953

    PubMed  CAS  Google Scholar 

  • Reinbold M, Luo JL, Nedelko T et al (2008) Common tumour p53 mutations in immortalized cells from Hupki mice heterozygous at codon 72. Oncogene 27:2788–2794

    PubMed  CAS  Google Scholar 

  • Ruijs MW, Schmidt MK, Nevanlinna H et al (2007) The single-nucleotide polymorphism 309 in the MDM2 gene contributes to the Li-Fraumeni syndrome and related phenotypes. Eur J Hum Genet 15:110–114

    PubMed  CAS  Google Scholar 

  • Schmitt CA, Rosenthal CT, Lowe SW (2000a) Genetic analysis of chemoresistance in primary murine lymphomas. Nat Med 6:1029–1035. doi: 10.1038/79542

    PubMed  CAS  Google Scholar 

  • Schmitt CA, Wallace-Brodeur RR, Rosenthal CT et al (2000b) DNA damage responses and chemosensitivity in the E mu-myc mouse lymphoma model. Cold Spring Harb Symp Quant Biol 65:499–510

    PubMed  CAS  Google Scholar 

  • Schneider K, Garber J (1993) Li-Fraumeni Syndrome. doi:NBK1311 [bookaccession]

    Google Scholar 

  • Slatkin M (2008) Linkage disequilibrium—understanding the evolutionary past and mapping the medical future. Nat Rev Genet 9:477–485. doi: nrg2361 [pii] 10.1038/nrg2361

    PubMed  CAS  Google Scholar 

  • Smirnov DA, Morley M, Shin E et al (2009) Genetic analysis of radiation-induced changes in human gene expression. Nature 459:587–591

    PubMed  CAS  Google Scholar 

  • Suzuki HI, Yamagata K, Sugimoto K et al (2009) Modulation of microRNA processing by p53. Nature 460:529–533. doi: nature08199 [pii] 10.1038/nature08199

    PubMed  CAS  Google Scholar 

  • Terzian T, Wang Y, Van Pelt CS et al (2007) Haploinsufficiency of Mdm2 and Mdm4 in tumorigenesis and development. Mol Cell Biol 27:5479–5485

    PubMed  CAS  Google Scholar 

  • Thomas M, Kalita A, Labrecque S et al (1999) Two polymorphic variants of wild-type p53 differ biochemically and biologically. Mol Cell Biol 19:1092–1100

    PubMed  CAS  Google Scholar 

  • The 1000 Genomes Project Consortium, Nature (2010) 467, 1061–1073

    Google Scholar 

  • Thull DL, Vogel VG (2004) Recognition and management of hereditary breast cancer syndromes. Oncologist 9:13–24

    PubMed  Google Scholar 

  • Toffoli G, Biason P, Russo A et al (2009) Effect of TP53 Arg72Pro and MDM2 SNP309 polymorphisms on the risk of high-grade osteosarcoma development and survival. Clin Cancer Res 15:3550–3556

    PubMed  CAS  Google Scholar 

  • Tomso DJ, Inga A, Menendez D et al (2005) Functionally distinct polymorphic sequences in the human genome that are targets for p53 transactivation. Proc Natl Acad Sci USA 102:6431–6436

    PubMed  CAS  Google Scholar 

  • Ueda M, Yamamoto M, Nunobiki O et al (2009) Murine double-minute 2 homolog single nucleotide polymorphism 309 and the risk of gynecologic cancer. Hum Cell 22:49–54

    PubMed  Google Scholar 

  • Varley JM (2003) Germline TP53 mutations and Li-Fraumeni syndrome. Hum Mutat 21:313–320

    PubMed  CAS  Google Scholar 

  • Varley JM, Evans DG, Birch JM (1997) Li-Fraumeni syndrome—a molecular and clinical review. Br J Cancer 76:1–14

    PubMed  CAS  Google Scholar 

  • Vazquez A, Bond EE, Levine AJ et al (2008) The genetics of the p53 pathway, apoptosis and cancer therapy. Nat Rev Drug Discov 7:979–987

    PubMed  CAS  Google Scholar 

  • Vazquez A, Kulkarni D, Grochola LF et al (2011) A genetic variant in a PP2A regulatory subunit encoded by the PPP2R2B gene associates with altered breast cancer risk and recurrence. Int J Cancer 128:2335–2343. doi: 10.1002/ijc.25582

    PubMed  CAS  Google Scholar 

  • Villani A, Tabori U, Schiffman J et al (2011) Biochemical and imaging surveillance in germline TP53 mutation carriers with Li-Fraumeni syndrome: a prospective observational study. Lancet Oncol 12:559–567. doi: S1470-2045(11)70119-X [pii] 10.1016/S1470-2045(11)70119-X

    PubMed  CAS  Google Scholar 

  • Vousden KH, Prives C (2009) Blinded by the light: the growing complexity of p53. Cell 137:413–431. doi: S0092-8674(09)00459-0 [pii] 10.1016/j.cell.2009.04.037

    PubMed  CAS  Google Scholar 

  • Wade M, Wang YV, Wahl GM (2010) The p53 orchestra: Mdm2 and Mdmx set the tone. Trends Cell Biol 20:299–309. doi: S0962-8924(10)00033-4 [pii] 10.1016/j.tcb.2010.01.009

    PubMed  CAS  Google Scholar 

  • Wallace-Brodeur RR, Lowe SW (1999) Clinical implications of p53 mutations. Cell Mol Life Sci 55:64–75

    PubMed  CAS  Google Scholar 

  • Wan Y, Wu W, Yin Z et al (2011) MDM2 SNP309, gene-gene interaction, and tumor susceptibility: an updated meta-analysis. BMC Cancer 11:208

    PubMed  CAS  Google Scholar 

  • Wei MC, Zong WX, Cheng EH et al (2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292:727–730. doi: 10.1126/science.1059108 292/5517/727 [pii]

    PubMed  CAS  Google Scholar 

  • Whibley C, Pharoah PD, Hollstein M (2009) p53 polymorphisms: cancer implications. Nat Rev Cancer 9:95–107

    PubMed  CAS  Google Scholar 

  • Zhang L, Yu J, Park BH et al (2000) Role of BAX in the apoptotic response to anticancer agents. Science 290:989–992. doi: 8940 [pii]

    PubMed  CAS  Google Scholar 

  • Zhou BB, Elledge SJ (2000) The DNA damage response: putting checkpoints in perspective. Nature 408:433–439. doi: 10.1038/35044005

    PubMed  CAS  Google Scholar 

  • Zhou BP, Liao Y, Xia W et al (2001) HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation. Nat Cell Biol 3:973–982. doi: 10.1038/ncb1101-973 ncb1101-973 [pii]

    PubMed  CAS  Google Scholar 

  • Zhou M, Gu L, Findley HW et al (2003) PTEN reverses MDM2-mediated chemotherapy resistance by interacting with p53 in acute lymphoblastic leukemia cells. Cancer Res 63:6357–6362

    PubMed  CAS  Google Scholar 

  • Zhu F, Dolle ME, Berton TR et al (2010) Mouse models for the p53 R72P polymorphism mimic human phenotypes. Cancer Res 70:5851–5859

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gareth L. Bond .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Grochola, L.F. et al. (2013). The Inheritance of p53. In: Hainaut, P., Olivier, M., Wiman, K. (eds) p53 in the Clinics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3676-8_2

Download citation

Publish with us

Policies and ethics