Skip to main content

Phagocytes and Humoral Immunity to Pneumonic Plague

  • Conference paper
  • First Online:
Advances in Yersinia Research

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 954))

Abstract

Immunity to pneumonic plague is conferred to the host by the production of antibodies targeting LcrV, a component of the Yersinia pestis type III secretion system machinery. To achieve adequate protection, antibodies must be administered early during infection. In order to extend this period of time and better understand the mechanism of humoral immunity toward disease, we have been identifying host factors that contribute to the antibody-mediated clearance of bacteria. Anti-LcrV antibodies not only inhibit effector protein translocation into host cells, but also opsonize bacteria for uptake by phagocytes. Thus, we examined the protective efficacy of anti-LcrV antibodies in mice deficient for phagocyte recruitment and effector function. We have previously shown that mice deficient in neutrophil recruitment and activation cannot be protected by antibody treatment, indicating that this cell population is essential in clearing opsonized bacteria. Although anti-LcrV antibodies cannot protect these mice from challenge, an initial inhibition in bacterial replication and a delay in the time to death are observed. Thus, we hypothesized here that additional phagocyte populations and/or functions mediate early protection from disease in the presence of protective antibodies. We show that mice lacking monocyte chemoattractant protein-1 (MCP-1) are deficient in their ability to clear infection. Similar results are seen in mice lacking CCR2, the receptor for MCP-1. To examine phagocyte effector functions that may be contributing to direct killing of the organism, we tested mice lacking 5-lipoxygenase, an enzyme that mediates phagocytosis and inflammatory cell recruitment, and found it was dispensable for antibody protection. We also examined mice deficient in monocyte, macrophage, and granulocyte autophagy and found similar results. Taken together, the data suggest that humoral immunity to pneumonic plague requires activation of specific pathways of recruitment and activation of neutrophils and inflammatory monocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agar SL, Sha J, Foltz SM et al (2008) Characterization of a mouse model of plague after aerosolization of Yersinia pestis CO92. Microbiology 154:1939–1948. doi: 154/7/1939 [pii] 10.1099/mic.0.2008/017335-0

    Article  PubMed  CAS  Google Scholar 

  • Balamayooran G, Batra S, Balamayooran T et al (2011) Monocyte chemoattractant protein 1 regulates pulmonary host defense via neutrophil recruitment during Escherichia coli infection. Infect Immun 79:2567–2577. doi: IAI.00067-11 [pii] 10.1128/IAI.00067-11

    Article  PubMed  CAS  Google Scholar 

  • Bashaw J, Norris S, Weeks S et al (2007) Development of in vitro correlate assays of immunity to infection with Yersinia pestis. Clin Vaccine Immunol 14:605–616. doi: CVI.00398-06 [pii] 10.1128/CVI.00398-06

    Article  PubMed  CAS  Google Scholar 

  • Blaho VA, Zhang Y, Hughes-Hanks JM, Brown CR (2011) 5-Lipoxygenase-deficient mice infected with Borrelia burgdorferi develop persistent arthritis. J Immunol 186(5):3076–3084. doi: jimmunol.1003473 [pii] 10.4049/jimmunol.1003473

    Article  PubMed  CAS  Google Scholar 

  • Cornelis GR (2006) The type III secretion injectisome. Nat Rev Microbiol 4:811–825. doi: nrmicro1526 [pii] 10.1038/nrmicro1526

    Article  PubMed  CAS  Google Scholar 

  • Cowan C, Philipovskiy AV, Wulff-Strobel CR et al (2005) Anti-LcrV antibody inhibits delivery of Yops by Yersinia pestis KIM5 by directly promoting phagocytosis. Infect Immun 73:6127–6137. doi: 73/9/6127 [pii] 10.1128/IAI.73.9.6127-6137.2005

    Article  PubMed  CAS  Google Scholar 

  • Cross M, Mangelsdorf I, Wedel A, Renkawitz R (1988) Mouse lysozyme M gene: isolation, characterization, and expression studies. Proc Natl Acad Sci U S A 85:6232–6236

    Article  PubMed  CAS  Google Scholar 

  • Deshmane SL, Kremlev S, Amini S, Sawaya BE (2009) Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interferon Cytokine Res 29:313–326. doi: 10.1089/jir.2008.0027

    Article  PubMed  CAS  Google Scholar 

  • Eisele NA, Anderson DM (2009) Dual-function antibodies to Yersinia pestis LcrV required for pulmonary clearance of plague. Clin Vaccine Immunol 16:1720–1727. doi: CVI.00333-09 [pii] 10.1128/CVI.00333-09

    Article  PubMed  CAS  Google Scholar 

  • Eisele NA, Lee-Lewis H, Besch-Williford C et al (2011) Chemokine receptor CXCR2 mediates bacterial clearance rather than neutrophil recruitment in a murine model of pneumonic plague. Am J Pathol 178:1190–1200. doi: S0002-9440(10)00204-X [pii] 10.1016/j.ajpath.2010.11.067

    Article  PubMed  CAS  Google Scholar 

  • Faust N, Varas F, Kelly LM et al (2000) Insertion of enhanced green fluorescent protein into the lysozyme gene creates mice with green fluorescent granulocytes and macrophages. Blood 96:719–726

    PubMed  CAS  Google Scholar 

  • Goodyear A, Jones A, Troyer R et al (2010) Critical protective role for MCP-1 in pneumonic Burkholderia mallei infection. J Immunol 184:1445–1454. doi: jimmunol.0900411 [pii] 10.4049/jimmunol.0900411

    Article  PubMed  CAS  Google Scholar 

  • Hara T, Nakamura K, Matsui M et al (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441:885–889. doi: nature04724 [pii] 10.1038/nature04724

    Article  PubMed  CAS  Google Scholar 

  • Heath DG, Anderson GW Jr, Mauro JM et al (1998) Protection against experimental bubonic and pneumonic plague by a recombinant capsular F1-V antigen fusion protein vaccine. Vaccine 16:1131–1137. doi: S0264-410X(98)80110-2 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Hill J, Leary SE, Griffin KF et al (1997) Regions of Yersinia pestis V antigen that contribute to protection against plague identified by passive and active immunization. Infect Immun 65:4476–4482

    PubMed  CAS  Google Scholar 

  • Hill J, Copse C, Leary S et al (2003) Synergistic protection of mice against plague with monoclonal antibodies specific for the F1 and V antigens of Yersinia pestis. Infect Immun 71:2234–2238

    Article  PubMed  CAS  Google Scholar 

  • Hill J, Leary S, Smither S et al (2009) N255 is a key residue for recognition by a monoclonal antibody which protects against Yersinia pestis infection. Vaccine 27:7073–7079. doi: S0264-410X(09)01395-4 [pii] 10.1016/j.vaccine.2009.09.061

    Article  PubMed  CAS  Google Scholar 

  • Kuma A, Hatano M, Matsui M et al (2004) The role of autophagy during the early neonatal starvation period. Nature 432:1032–1036. doi: nature03029 [pii] 10.1038/nature03029

    Article  PubMed  CAS  Google Scholar 

  • Lathem WW, Crosby SD, Miller VL et al (2005) Progression of primary pneumonic plague: a mouse model of infection, pathology, and bacterial transcriptional activity. Proc Natl Acad Sci U S A 102:17786–17791. doi: 0506840102 [pii] 10.1073/pnas.0506840102

    Article  PubMed  CAS  Google Scholar 

  • Mancuso P, Standiford TJ, Marshall T et al (1998) 5-Lipoxygenase reaction products modulate alveolar macrophage phagocytosis of Klebsiella pneumoniae. Infect Immun 66:5140–5146

    PubMed  CAS  Google Scholar 

  • Mancuso P, Nana-Sinkam P, Peters-Golden M (2001) Leukotriene B4 augments neutrophil phagocytosis of Klebsiella pneumoniae. Infect Immun 69:2011–2016. doi: 10.1128/IAI.69.4.2011-2016.2001

    Article  PubMed  CAS  Google Scholar 

  • Nasser MW, Raghuwanshi SK, Grant DJ et al (2009) Differential activation and regulation of CXCR1 and CXCR2 by CXCL8 monomer and dimer. J Immunol 183:3425–3432. doi: jimmunol.0900305 [pii] 10.4049/jimmunol.0900305

    Article  PubMed  CAS  Google Scholar 

  • Noel BL, Lilo S, Capurso D et al (2009) Yersinia pestis can bypass protective antibodies to LcrV and activation with gamma interferon to survive and induce apoptosis in murine macrophages. Clin Vaccine Immunol 16:1457–1466. doi: CVI.00172-09 [pii] 10.1128/CVI.00172-09

    Article  PubMed  CAS  Google Scholar 

  • Parent MA, Wilhelm LB, Kummer LW et al (2006) Gamma interferon, tumor necrosis factor alpha, and nitric oxide synthase 2, key elements of cellular immunity, perform critical protective functions during humoral defense against lethal pulmonary Yersinia pestis infection. Infect Immun 74:3381–3386. doi: 74/6/3381 [pii] 10.1128/IAI.00185-06

    Article  PubMed  CAS  Google Scholar 

  • Peters-Golden M (2008) Expanding roles for leukotrienes in airway inflammation. Curr Allergy Asthma Rep 8:367–373

    Article  PubMed  CAS  Google Scholar 

  • Peters-Golden M, Brock TG (2003) 5-lipoxygenase and FLAP. Prostaglandins Leukot Essent Fatty Acids 69:99–109. doi: S095232780300070X [pii]

    Article  PubMed  CAS  Google Scholar 

  • Pitt ML (2004) Nonhuman primates as a model for pneumonic plague. In: Public workshop on animal models and correlates of protection for plague vaccines, Gaithersburg, MD, 13 Oct 2004, pp. 222–248

    Google Scholar 

  • Pujol C, Klein KA, Romanov GA et al (2009) Yersinia pestis can reside in autophagosomes and avoid xenophagy in murine macrophages by preventing vacuole acidification. Infect Immun 77:2251–2261. doi: IAI.00068-09 [pii] 10.1128/IAI.00068-09

    Article  PubMed  CAS  Google Scholar 

  • Quenee LE, Cornelius CA, Ciletti NA et al (2008) Yersinia pestis caf1 variants and the limits of plague vaccine protection. Infect Immun 76:2025–2036. doi: IAI.00105-08 [pii] 10.1128/IAI.00105-08

    Article  PubMed  CAS  Google Scholar 

  • Quenee LE, Berube BJ, Segal J et al (2010) Amino acid residues 196-225 of LcrV represent a plague protective epitope. Vaccine 28:1870–1876. doi: S0264-410X(09)01883-0 [pii] 10.1016/j.vaccine.2009.11.076

    Article  PubMed  CAS  Google Scholar 

  • Quenee LE, Ciletti NA, Elli D et al (2011) Prevention of pneumonic plague in mice, rats, guinea pigs and non-human primates with clinical grade rV10, rV10-2 or F1-V vaccines. Vaccine. doi: S0264-410X(11)01022-X [pii] 10.1016/j.vaccine.2011.06.119

    Google Scholar 

  • Rosenzweig JA, Jejelowo O, Sha J et al (2011) Progress on plague vaccine development. Appl Microbiol Biotechnol 91:265–286. doi: 10.1007/s00253-011-3380-6

    Article  PubMed  CAS  Google Scholar 

  • Szymczak WA, Deepe GS Jr (2009) The CCL7-CCL2-CCR2 axis regulates IL-4 production in lungs and fungal immunity. J Immunol 183:1964–1974. doi: jimmunol.0901316 [pii] 10.4049/jimmunol.0901316

    Article  PubMed  CAS  Google Scholar 

  • Virgin HW, Levine B (2009) Autophagy genes in immunity. Nat Immunol 10:461–470. doi: ni.1726 [pii] 10.1038/ni.1726

    Article  PubMed  CAS  Google Scholar 

  • Weeks S, Hill J, Friedlander A, Welkos S (2002) Anti-V antigen antibody protects macrophages from Yersinia pestis-induced cell death and promotes phagocytosis. Microb Pathog 32:227–237. doi: 10.1006/mpat.2002.0498 S0882401002904985 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Williamson ED, Eley SM, Griffin KF et al (1995) A new improved sub-unit vaccine for plague: the basis of protection. FEMS Immunol Med Microbiol 12:223–230

    Article  PubMed  CAS  Google Scholar 

  • Williamson ED, Flick-Smith HC, Lebutt C et al (2005) Human immune response to a plague vaccine comprising recombinant F1 and V antigens. Infect Immun 73:3598–3608. doi: 73/6/3598 [pii] 10.1128/IAI.73.6.3598-3608.2005

    Article  PubMed  CAS  Google Scholar 

  • Williamson ED, Flick-Smith HC, Waters E et al (2007) Immunogenicity of the rF1  +  rV vaccine for plague with identification of potential immune correlates. Microb Pathog 42:11–21. doi: S0882-4010(06)00125-2 [pii] 10.1016/j.micpath.2006.09.003

    Article  PubMed  CAS  Google Scholar 

  • Williamson ED, Packer PJ, Waters EL et al (2011) Recombinant (F1  +  V) vaccine protects Cynomolgus macaques against pneumonic plague. Vaccine 29:4771–4777. doi: S0264-410X(11)00639-6 [pii] 10.1016/j.vaccine.2011.04.084

    Article  PubMed  CAS  Google Scholar 

  • Zhang XW, Liu Q, Wang Y, Thorlacius H (2001) CXC chemokines, MIP-2 and KC, induce P-selectin-dependent neutrophil rolling and extravascular migration in vivo. Br J Pharmacol 133:413–421. doi: 10.1038/sj.bjp. 0704087

    Article  PubMed  CAS  Google Scholar 

  • Zhao Z, Thackray LB, Miller BC et al (2007) Coronavirus replication does not require the autophagy gene ATG5. Autophagy 3:581–585. doi: 4782 [pii]

    PubMed  CAS  Google Scholar 

  • Zhao Z, Fux B, Goodwin M et al (2008) Autophagosome-independent essential function for the autophagy protein Atg5 in cellular immunity to intracellular pathogens. Cell Host Microbe 4:458–469. doi: S1931-3128(08)00329-6 [pii] 10.1016/j.chom.2008.10.003

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank all of the members of the Anderson laboratory for technical assistance with BSL-3 experiments. We would also like to thank Dr. Herbert W. Virgin for graciously providing the ATG5 mice. NAE is supported by an NIH/NIGMS Cellular and Molecular Biology training grant (T32 GM008396). This work was funded in part by the Midwest Regional Center of Excellence for Biodefense and Emerging Infectious Diseases (U54 AI157160).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deborah M. Anderson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this paper

Cite this paper

Eisele, N.A., Brown, C.R., Anderson, D.M. (2012). Phagocytes and Humoral Immunity to Pneumonic Plague. In: de Almeida, A., Leal, N. (eds) Advances in Yersinia Research. Advances in Experimental Medicine and Biology, vol 954. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3561-7_21

Download citation

Publish with us

Policies and ethics