Skip to main content

Neural Circuitry Responsible for Sleep and Wakefulness

  • Chapter
  • First Online:
Book cover Sleep Loss and Obesity

Abstract

Research over the past 50 years has determined that specific neurons in the brain are responsible for generating waking, non-REM sleep, and REM sleep. Some of the neurons responsible for keeping us awake are also involved in regulating energy metabolism. One such arousal neuronal population contains the neuropeptide hypocretin, also known as orexin. The HCRT neurons are located in the hypothalamus, an area that also contains other neurons regulating energy metabolism. The hypocretin neurons are most active during waking and silent during sleep, and their activity has been shown to regulate brown adipose tissue (BAT) thermogenesis. The hypocretin neurons are also activated by low glucose levels and shut off when the glucose levels increase. Thus, the activity of the hypocretin neurons is linked to energy metabolism. Based on this relationship, it is easy to see how inadequate sleep or even frequent arousals during sleep, as occurs in obstructive sleep apnea, will affect energy metabolism and adiposity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aserinsky E, Kleitman N. Regularly occurring periods of eye motility and concomitant phenomenon during sleep. Science. 1953;118:273–4.

    Article  PubMed  CAS  Google Scholar 

  2. Morrison AR. The discovery of REM sleep: the death knell of the passive theory of sleep. In: Mallick BN, Pandi-Perumal SR, McCarley RW, Morrison AR, editors. Rapid eye movement sleep: regulation and function. Cambridge: Cambridge University Press; 2011. p. 31–9.

    Chapter  Google Scholar 

  3. Kaur S, Thankachan S, Begum S, Liu M, Blanco-Centurion C, Shiromani PJ. Hypocretin-2 saporin lesions of the ventrolateral periaquaductal gray (vlPAG) increase REM sleep in hypocretin knockout mice. PLoS One. 2009;4(7):e6346.

    Article  PubMed  CAS  Google Scholar 

  4. Blanco-Centurion C, Gerashchenko D, Salin-Pascual RJ, Shiromani PJ. Effects of hypocretin2-saporin and antidopamine-beta-hydroxylase-saporin neurotoxic lesions of the dorsolateral pons on sleep and muscle tone. Eur J Neurosci. 2004;19(10):2741–52.

    Article  PubMed  Google Scholar 

  5. Shiromani PJ, Blanco-Centurion C. Pontine areas inhibiting REM sleep. In: Mallick BN, Pandi-Perumal SR, McCarley RW, Morrison AR, editors. Rapid eye movement sleep: regulation and function. Cambridge: Cambridge University Press; 2011. p. 280–4.

    Chapter  Google Scholar 

  6. Chou TC, Bjorkum AA, Gaus SE, Lu J, Scammell TE, Saper CB. Afferents to the ventrolateral preoptic nucleus. J Neurosci. 2002;22(3):977–90.

    PubMed  CAS  Google Scholar 

  7. Gallopin T, Fort P, Eggermann E, et al. Identification of sleep-promoting neurons in vitro. Nature. 2000;404:992–5.

    Article  PubMed  CAS  Google Scholar 

  8. Sherin JE, Shiromani PJ, McCarley RW, Saper CB. Activation of ventrolateral preoptic neurons during sleep. Science. 1996;271(5246):216–9.

    Article  PubMed  CAS  Google Scholar 

  9. Lu J, Greco MA, Shiromani P, Saper CB. Effect of lesions of the ventrolateral preoptic nucleus on NREM and REM sleep. J Neurosci. 2000;20(10):3830–42.

    PubMed  CAS  Google Scholar 

  10. Gvilia I, Turner A, McGinty D, Szymusiak R. Preoptic area neurons and the homeostatic regulation of rapid eye movement sleep. J Neurosci. 2006;26(11):3037–44.

    Article  PubMed  CAS  Google Scholar 

  11. Gvilia I, Xu F, McGinty D, Szymusiak R. Homeostatic regulation of sleep: a role for preoptic area neurons. J Neurosci. 2006;26(37):9426–33.

    Article  PubMed  CAS  Google Scholar 

  12. Hsieh KC, Gvilia I, Kumar S, et al. c-Fos expression in neurons projecting from the preoptic and lateral hypothalamic areas to the ventrolateral periaqueductal gray in relation to sleep states. Neuroscience. 2011;188:55–67.

    Article  PubMed  CAS  Google Scholar 

  13. Gerashchenko D, Wisor JP, Burns D, et al. Identification of a population of sleep-active cerebral cortex neurons. Proc Natl Acad Sci USA. 2008;105(29):10227–32.

    Article  PubMed  CAS  Google Scholar 

  14. Nahon JL. The melanocortins and melanin-concentrating hormone in the central regulation of feeding behavior and energy homeostasis. C R Biol. 2006;329(8):623–38.

    Article  PubMed  CAS  Google Scholar 

  15. Saito Y, Nagasaki H. The melanin-concentrating hormone system and its physiological functions. Results Probl Cell Differ. 2008;46:159–79.

    Article  PubMed  CAS  Google Scholar 

  16. Qu D, Ludwig DS, Gammeltoft S, et al. A role for melanin-concentrating hormone in the central regulation of feeding behaviour. Nature. 1996;380(6571):243–7.

    Article  PubMed  CAS  Google Scholar 

  17. Shimada M, Tritos NA, Lowell BB, Flier JS, Maratos-Flier E. Mice lacking melanin-concentrating hormone are hypophagic and lean. Nature. 1998;396:670–4.

    Article  PubMed  CAS  Google Scholar 

  18. Alon T, Friedman JM. Late-onset leanness in mice with targeted ablation of melanin concentrating hormone neurons. J Neurosci. 2006;26(2):389–97.

    Article  PubMed  CAS  Google Scholar 

  19. Shearman LP, Camacho RE, Sloan Stribling D, et al. Chronic MCH-1 receptor modulation alters appetite, body weight and adiposity in rats. Eur J Pharmacol. 2003;475(1–3):37–47.

    Article  PubMed  CAS  Google Scholar 

  20. Gompf HS, Mathai C, Fuller PM, et al. Locus ceruleus and anterior cingulate cortex sustain wakefulness in a novel environment. J Neurosci. 2010;30(43):14543–51.

    Article  PubMed  CAS  Google Scholar 

  21. Blanco-Centurion C, Gerashchenko D, Shiromani PJ. Effects of saporin-induced lesions of three arousal populations on daily levels of sleep and wake. J Neurosci. 2007;27(51):14041–8.

    Article  PubMed  CAS  Google Scholar 

  22. Salin-Pascual R, Gerashchenko D, Greco M, Blanco-Centurion C, Shiromani PJ. Hypothalamic regulation of sleep. Neuropsychopharmacology. 2001;25 Suppl 5:S21–7.

    Article  PubMed  CAS  Google Scholar 

  23. De Lecea L, Kilduff TS, Peyron C, et al. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci USA. 1998;95(1):322–7.

    Article  PubMed  Google Scholar 

  24. Sakurai T, Amemiya A, Ishii M, et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior [comment]. Cell. 1998;92(5):573–85.

    Article  PubMed  CAS  Google Scholar 

  25. Deadwyler SA, Porrino L, Siegel JM, Hampson RE. Systemic and nasal delivery of orexin-A (hypocretin-1) reduces the effects of sleep deprivation on cognitive performance in nonhuman primates. J Neurosci. 2007;27(52):14239–47.

    Article  PubMed  CAS  Google Scholar 

  26. Lin L, Faraco J, Li R, et al. The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell. 1999;98(3):365–76.

    Article  PubMed  CAS  Google Scholar 

  27. Chemelli RM, Willie JT, Sinton CM, et al. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell. 1999;98(4):437–51.

    Article  PubMed  CAS  Google Scholar 

  28. Peyron C, Faraco J, Rogers W, et al. A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat Med. 2000;6(9):991–7.

    Article  PubMed  CAS  Google Scholar 

  29. Thannickal TC, Moore RY, Nienhuis R, et al. Reduced number of hypocretin neurons in human narcolepsy. Neuron. 2000;27(3):469–74.

    Article  PubMed  CAS  Google Scholar 

  30. Nishino S, Ripley B, Overeem S, et al. Low cerebrospinal fluid hypocretin (Orexin) and altered energy homeostasis in human narcolepsy. Ann Neurol. 2001;50(3):381–8.

    Article  PubMed  CAS  Google Scholar 

  31. Willie JT, Chemelli RM, Sinton CM, et al. Distinct narcolepsy syndromes in Orexin receptor-2 and Orexin null mice: molecular genetic dissection of non-REM and REM sleep regulatory processes. Neuron. 2003;38(5):715–30.

    Article  PubMed  CAS  Google Scholar 

  32. Brisbare-Roch C, Dingemanse J, Koberstein R, et al. Promotion of sleep by targeting the orexin system in rats, dogs and humans. Nat Med. 2007;13(2):150–5.

    Article  PubMed  CAS  Google Scholar 

  33. Lee MG, Hassani OK, Jones BE. Discharge of identified orexin/hypocretin neurons across the sleep-waking cycle. J Neurosci. 2005;25:6716–20.

    Article  PubMed  CAS  Google Scholar 

  34. Mileykovskiy BY, Kiyashchenko LI, Siegel JM. Behavioral correlates of activity in identified hypocretin/orexin neurons. Neuron. 2005;46(5):787–98.

    Article  PubMed  CAS  Google Scholar 

  35. Takahashi K, Lin JS, Sakai K. Neuronal activity of orexin and non-orexin waking-active neurons during wake-sleep states in the mouse. Neuroscience. 2008;153(3):860–70.

    Article  PubMed  CAS  Google Scholar 

  36. Kaur S, Thankachan S, Begum S, et al. Entrainment of temperature and activity rhythms to restricted feeding in orexin knock out mice. Brain Res. 2008;1205:47–54.

    Article  PubMed  CAS  Google Scholar 

  37. Akiyama M, Yuasa T, Hayasaka N, Horikawa K, Sakurai T, Shibata S. Reduced food anticipatory activity in genetically orexin (hypocretin) neuron-ablated mice. Eur J Neurosci. 2004;20(11):3054–62.

    Article  PubMed  Google Scholar 

  38. Mieda M, Willie JT, Hara J, Sinton CM, Sakurai T, Yanagisawa M. Orexin peptides prevent cataplexy and improve wakefulness in an orexin neuron-ablated model of narcolepsy in mice. Proc Natl Acad Sci USA. 2004;101(13):4649–54.

    Article  PubMed  CAS  Google Scholar 

  39. Gooley JJ, Schomer A, Saper CB. The dorsomedial hypothalamic nucleus is critical for the expression of food-entrainable circadian rhythms. Nat Neurosci. 2006;9(3):398–407.

    Article  PubMed  CAS  Google Scholar 

  40. Landry GJ, Simon MM, Webb IC, Mistlberger RE. Persistence of a behavioral food-anticipatory circadian rhythm following dorsomedial hypothalamic ablation in rats. Am J Physiol Regul Integr Comp Physiol. 2006;290(6):R1527–34.

    Article  PubMed  CAS  Google Scholar 

  41. Kohno D, Gao HZ, Muroya S, Kikuyama S, Yada T. Ghrelin directly interacts with neuropeptide-Y-containing neurons in the rat arcuate nucleus: Ca2+ signaling via protein kinase A and N-type channel-dependent mechanisms and cross-talk with leptin and orexin. Diabetes. 2003;52(4):948–56.

    Article  PubMed  CAS  Google Scholar 

  42. Karnani MM, Apergis-Schoute J, Adamantidis A, et al. Activation of central orexin/hypocretin neurons by dietary amino acids. Neuron. 2011;72(4):616–29.

    Article  PubMed  CAS  Google Scholar 

  43. Levin BE, Routh VH, Kang L, Sanders NM, Dunn-Meynell AA. Neuronal glucosensing: what do we know after 50 years? Diabetes. 2004;53(10):2521–8.

    Article  PubMed  CAS  Google Scholar 

  44. Yamanaka A, Beuckmann CT, Willie JT, et al. Hypothalamic orexin neurons regulate arousal according to energy balance in mice. Neuron. 2003;38(5):701–13.

    Article  PubMed  CAS  Google Scholar 

  45. Burdakov D, Luckman SM, Verkhratsky A. Glucose-sensing neurons of the hypothalamus. Philos Trans R Soc Lond B Biol Sci. 2005;360(1464):2227–35.

    Article  PubMed  CAS  Google Scholar 

  46. Funato H, Tsai AL, Willie JT, et al. Enhanced orexin receptor-2 signaling prevents diet-induced obesity and improves leptin sensitivity. Cell Metab. 2009;9(1):64–76.

    Article  PubMed  CAS  Google Scholar 

  47. Sellayah D, Bharaj P, Sikder D. Orexin is required for brown adipose tissue development, differentiation, and function. Cell Metab. 2011;14(4):478–90.

    Article  PubMed  CAS  Google Scholar 

  48. Tupone D, Madden CJ, Cano G, Morrison SF. An orexinergic projection from perifornical hypothalamus to raphe pallidus increases rat brown adipose tissue thermogenesis. J Neurosci. 2011;31(44):15944–55.

    Article  PubMed  CAS  Google Scholar 

  49. Yagita K, Tamanini F, van Der Horst GT, Okamura H. Molecular mechanisms of the biological clock in cultured fibroblasts. Science. 2001;292(5515):278–81.

    Article  PubMed  CAS  Google Scholar 

  50. Nakahata Y, Kaluzova M, Grimaldi B, et al. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell. 2008;134(2):329–40.

    Article  PubMed  CAS  Google Scholar 

  51. Murayama A, Ohmori K, Fujimura A, et al. Epigenetic control of rDNA loci in response to intracellular energy status. Cell. 2008;133(4):627–39.

    Article  PubMed  CAS  Google Scholar 

  52. Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature. 2005;434(7029):113–8.

    Article  PubMed  CAS  Google Scholar 

  53. Satoh A, Brace CS, Ben Josef G, et al. SIRT1 promotes the central adaptive response to diet restriction through activation of the dorsomedial and lateral nuclei of the hypothalamus. J Neurosci. 2010;30(30):10220–32.

    Article  PubMed  CAS  Google Scholar 

  54. Celesia GG, Jasper HH. Acetylcholine released from cerebral cortex in relation to state of activation. Neurology. 1966;16:1053–64.

    Article  PubMed  CAS  Google Scholar 

  55. Szerb JC. Cortical acetylcholine release and electroencephalographic arousal. J Physiol (Lond). 1967;192:329–45.

    CAS  Google Scholar 

  56. Jasper HH, Tessier J. Acetylcholine liberation from cerbral cortex during paradoxical (REM) sleep. Science. 1971;172:601–2.

    Article  PubMed  CAS  Google Scholar 

  57. Rasmusson DD, Clow K, Szerb JC. Frequency-dependent increase in cortical acetylcholine release evoked by stimulation of the nucleus basalis magnocellularis in the rat. Brain Res. 1992;594:150–4.

    Article  PubMed  CAS  Google Scholar 

  58. Dekker AJ, Thal LJ. Independent effects of cholinergic and serotonergic lesions on acetylcholine and serotonin release in the neocortex of the rat. Neurochem Res. 1993;18:277–83.

    Article  PubMed  CAS  Google Scholar 

  59. Lapierre JL, Kosenko PO, Lyamin OI, Kodama T, Mukhametov LM, Siegel JM. Cortical acetylcholine release is lateralized during asymmetrical slow-wave sleep in northern fur seals. J Neurosci. 2007;27(44):11999–2006.

    Article  PubMed  CAS  Google Scholar 

  60. Eggermann E, Serafin M, Bayer L, et al. Orexins/hypocretins excite basal forebrain cholinergic neurones. Neuroscience. 2001;108(2):177–81.

    Article  PubMed  CAS  Google Scholar 

  61. Fadel J, Pasumarthi R, Reznikov LR. Stimulation of cortical acetylcholine release by orexin A. Neuroscience. 2005;130(2):541–7.

    Article  PubMed  CAS  Google Scholar 

  62. Espana RA, Baldo BA, Kelley AE, Berridge CW. Wake-promoting and sleep-suppressing actions of hypocretin (orexin): basal forebrain sites of action. Neuroscience. 2001;106(4):699–715.

    Article  PubMed  CAS  Google Scholar 

  63. Thakkar MM, Ramesh V, Strecker RE, McCarley RW. Microdialysis perfusion of orexin-A in the basal forebrain increases wakefulness in freely behaving rats. Arch Ital Biol. 2001;139(3):313–28.

    PubMed  CAS  Google Scholar 

  64. Blanco-Centurion C, Xu M, Murillo-Rodriguez E, et al. Adenosine and sleep homeostasis in the basal forebrain. J Neurosci. 2006;26(31):8092–100.

    Article  PubMed  CAS  Google Scholar 

  65. Duque A, Balatoni B, Detari L, Zaborszky L. EEG correlation of the discharge properties of identified neurons in the basal forebrain. J Neurophysiol. 2000;84(3):1627–35.

    PubMed  CAS  Google Scholar 

  66. Zaborszky L, Duque A. Sleep-wake mechanisms and basal forebrain circuitry. Front Biosci. 2003;8:d1146–69.

    Article  PubMed  CAS  Google Scholar 

  67. Jones BE. Arousal systems. Front Biosci. 2003;8:s438–51.

    Article  PubMed  CAS  Google Scholar 

  68. Manns ID, Lee MG, Modirrousta M, Hou YP, Jones BE. Alpha 2 adrenergic receptors on GABAergic, putative sleep-promoting basal forebrain neurons. Eur J Neurosci. 2003;18(3):723–7.

    Article  PubMed  Google Scholar 

  69. Gritti I, Mainville L, Mancia M, Jones BE. GABAergic and other noncholinergic basal forebrain neurons, together with cholinergic neurons, project to the mesocortex and isocortex in the rat. J Comp Neurol. 1997;383(2):163–77.

    Article  PubMed  CAS  Google Scholar 

  70. Senba E, Daddona PE, Watanabe T, Wu JY, Nagy JI. Adenosine deaminase is a marker for histamine neurons in the rat. J Neurosci. 1985;5:3393–402.

    PubMed  CAS  Google Scholar 

  71. Lin JS, Sakai K, Jouvet M. Hypothalamo-preoptic histaminergic projections in sleep-wake control in the cat. Eur J Neurosci. 1994;6(4):618–25.

    Article  PubMed  CAS  Google Scholar 

  72. Takahashi K, Lin JS, Sakai K. Neuronal activity of histaminergic tuberomammillary neurons during wake-sleep states in the mouse. J Neurosci. 2006;26(40):10292–8.

    Article  PubMed  CAS  Google Scholar 

  73. John J, Wu MF, Boehmer LN, Siegel JM. Cataplexy-active neurons in the hypothalamus: implications for the role of histamine in sleep and waking behavior. Neuron. 2004;42(4):619–34.

    Article  PubMed  CAS  Google Scholar 

  74. Marcus JN, Aschkenasi CJ, Lee CE, et al. Differential expression of orexin receptors 1 and 2 in the rat brain. J Comp Neurol. 2001;435(1):6–25.

    Article  PubMed  CAS  Google Scholar 

  75. Eriksson KS, Sergeeva O, Brown RE, Haas HL. Orexin/hypocretin excites the histaminergic neurons of the tuberomammillary nucleus. J Neurosci. 2001;21(23):9273–9.

    PubMed  CAS  Google Scholar 

  76. Sakurai T, Nagata R, Yamanaka A, et al. Input of orexin/hypocretin neurons revealed by a genetically encoded tracer in mice. Neuron. 2005;46(2):297–308.

    Article  PubMed  CAS  Google Scholar 

  77. Li Y, Gao XB, Sakurai T, van den Pol AN. Hypocretin/Orexin excites hypocretin neurons via a local glutamate neuron-A potential mechanism for orchestrating the hypothalamic arousal system. Neuron. 2002;36(6):1169–81.

    Article  PubMed  CAS  Google Scholar 

  78. Hobson JA, McCarley RW, Wyzinski PW. Sleep cycle oscillation: reciprocal discharge by two brainstem neuronal groups. Science. 1975;189:55–8.

    Article  PubMed  CAS  Google Scholar 

  79. McGinty DJ, Harper RM. Dorsal raphe neurons: depression of firing during sleep in cats. Brain Res. 1976;101(3):569–75.

    Article  PubMed  CAS  Google Scholar 

  80. Peyron C, Tighe DK, Van den Pol AN, et al. Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci. 1998;18(23):9996–10015.

    PubMed  CAS  Google Scholar 

  81. Greco MA, Shiromani PJ. Hypocretin receptor protein and mRNA expression in the dorsolateral pons of rats. Brain Res Mol Brain Res. 2001;88(1–2):176–82.

    Article  PubMed  CAS  Google Scholar 

  82. Hagan JJ, Leslie RA, Patel S, et al. Orexin A activates locus coeruleus cell firing and increases arousal in the rat. Proc Natl Acad Sci USA. 1999;96(19):10911–6.

    Article  PubMed  CAS  Google Scholar 

  83. Horvath TL, Peyron C, Diano S, et al. Hypocretin (orexin) activation and synaptic innervation of the locus coeruleus noradrenergic system. J Comp Neurol. 1999;415(2):145–59.

    Article  PubMed  CAS  Google Scholar 

  84. Harper RM. A technique for recording single neurons from unrestrained animals. In: Mi P, editor. Brain unit activity during behavior. Springfield: Thomas; 1973. p. 80–104.

    Google Scholar 

  85. Adrien J. Sleep and waking in mutant mice that do not express various proteins involved in serotonergic neurotransmission such as the serotonergic transporter, monoamine oxidase A, and 5-HT1A, 5-HT1B, 5-HT2A, 5-HT2C and 5-HT7 receptors. In: Monti JM, Pandi-Perumal SR, Jacobs BL, Nutt DJ, editors. Serotonin and sleep: molecular, functional and clinical aspects. Basel: Birkhauser; 2008. p. 457–76.

    Chapter  Google Scholar 

  86. Boutrel B, Franc B, Hen R, Hamon M, Adrien J. Key role of 5-HT1B receptors in the regulation of paradoxical sleep as evidenced in 5-HT1B knock-out mice. J Neurosci. 1999;19(8):3204–12.

    PubMed  CAS  Google Scholar 

  87. Boutrel B, Monaca C, Hen R, Hamon M, Adrien J. Involvement of 5-HT1A receptors in homeostatic and stress-induced adaptive regulations of paradoxical sleep: studies in 5-HT1A knock-out mice. J Neurosci. 2002;22(11):4686–92.

    PubMed  CAS  Google Scholar 

  88. Thakkar MM, Strecker RE, McCarley RW. Behavioral state control through differential serotonergic inhibition in the mesopontine cholinergic nuclei: a simultaneous unit recording and microdialysis study. J Neurosci. 1998;18(14):5490–7.

    PubMed  CAS  Google Scholar 

  89. Popa D, Lena C, Fabre V, et al. Contribution of 5-HT2 receptor subtypes to sleep-wakefulness and respiratory control, and functional adaptations in knock-out mice lacking 5-HT2A receptors. J Neurosci. 2005;25(49):11231–8.

    Article  PubMed  CAS  Google Scholar 

  90. Frank MG, Stryker MP, Tecott LH. Sleep and sleep homeostasis in mice lacking the 5-HT2c receptor. Neuropsychopharmacology. 2002;27(5):869–73.

    Article  PubMed  CAS  Google Scholar 

  91. Morairty SR, Hedley L, Flores J, Martin R, Kilduff TS. Selective 5HT2A and 5HT6 receptor antagonists promote sleep in rats. Sleep. 2008;31(1):34–44.

    PubMed  Google Scholar 

  92. Dugovic C, Wauquier A, Leysen JE, Marrannes R, Janssen PA. Functional role of 5-HT2 receptors in the regulation of sleep and wakefulness in the rat. Psychopharmacology (Berl). 1989;97(4):436–42.

    Article  CAS  Google Scholar 

  93. Monti JM, Jantos H. Effects of the 5-HT receptor antagonists SB-399885 and RO-4368554 and of the 5-HT(2A) receptor antagonist EMD 281014 on sleep and wakefulness in the rat during both phases of the light-dark cycle. Behav Brain Res. 2011;216(1):381–8.

    Article  PubMed  CAS  Google Scholar 

  94. Qiu J, Xue C, Bosch MA, et al. Serotonin 5-hydroxytryptamine2C receptor signaling in hypothalamic proopiomelanocortin neurons: role in energy homeostasis in females. Mol Pharmacol. 2007;72(4):885–96.

    Article  PubMed  CAS  Google Scholar 

  95. Heisler LK, Jobst EE, Sutton GM, et al. Serotonin reciprocally regulates melanocortin neurons to modulate food intake. Neuron. 2006;51(2):239–49.

    Article  PubMed  CAS  Google Scholar 

  96. Zhou L, Sutton GM, Rochford JJ, et al. Serotonin 2 C receptor agonists improve type 2 diabetes via melanocortin-4 receptor signaling pathways. Cell Metab. 2007;6(5):398–405.

    Article  PubMed  CAS  Google Scholar 

  97. Heal DJ, Smith SL, Fisas A, Codony X, Buschmann H. Selective 5-HT6 receptor ligands: progress in the development of a novel pharmacological approach to the treatment of obesity and related metabolic disorders. Pharmacol Ther. 2008;117(2):207–31.

    Article  PubMed  CAS  Google Scholar 

  98. Woolley ML, Bentley JC, Sleight AJ, Marsden CA, Fone KC. A role for 5-ht6 receptors in retention of spatial learning in the Morris water maze. Neuropharmacology. 2001;41(2):210–9.

    Article  PubMed  CAS  Google Scholar 

  99. Jones BE, Paradoxical REM. Sleep promoting and permitting neuronal networks. Arch Ital Biol. 2004;142(4):379–96.

    PubMed  CAS  Google Scholar 

  100. Shiromani PJ, Winston S, McCarley RW. Pontine cholinergic neurons show Fos-like immunoreactivity associated with cholinergically induced REM sleep. Brain Res Mol Brain Res. 1996;38(1):77–84.

    Article  PubMed  CAS  Google Scholar 

  101. Thankachan S, Kaur S, Shiromani PJ. Activity of pontine neurons during sleep and cataplexy in hypocretin knock-out mice. J Neurosci. 2009;29(5):1580–5.

    Article  PubMed  CAS  Google Scholar 

  102. Vanini G, Wathen BL, Lydic R, Baghdoyan HA. Endogenous GABA levels in the pontine reticular formation are greater during wakefulness than during rapid eye movement sleep. J Neurosci. 2011;31(7):2649–56.

    Article  PubMed  CAS  Google Scholar 

  103. Kuldau JM, Rand CSW. The night eating syndrome and bulimia nervosa in the morbidly obese. Int J Eat Disord. 1986;5:143–8.

    Article  Google Scholar 

  104. Stunkard AJ, Grace WJ, Wolff HG. The night-eating syndrome; a pattern of food intake among certain obese patients. Am J Med. 1955;19(1):78–86.

    Article  PubMed  CAS  Google Scholar 

  105. O’Reardon JP, Ringel BL, Dinges DF, et al. Circadian eating and sleeping patterns in the night eating syndrome. Obes Res. 2004;12(11):1789–96.

    Article  PubMed  Google Scholar 

  106. Goel N, Stunkard AJ, Rogers NL, et al. Circadian rhythm profiles in women with night eating syndrome. J Biol Rhythms. 2009;24(1):85–94.

    Article  PubMed  CAS  Google Scholar 

  107. Allison KC, Ahima RS, O’Reardon JP, et al. Neuroendocrine profiles associated with energy intake, sleep, and stress in the night eating syndrome. J Clin Endocrinol Metab. 2005;90(11):6214–7.

    Article  PubMed  CAS  Google Scholar 

  108. Stunkard AJ, Allison KC, Lundgren JD, O’Reardon JP. A biobehavioural model of the night eating syndrome. Obes Rev. 2009;10 Suppl 2:69–77.

    Article  PubMed  Google Scholar 

  109. Halle M, Berg A, Garwers U, Grathwohl D, Knisel W, Keul J. Concurrent reductions of serum leptin and lipids during weight loss in obese men with type II diabetes. Am J Physiol. 1999;277(2 Pt 1):E277–82.

    PubMed  CAS  Google Scholar 

  110. Scheen AJ, Luyckx FH. Medical aspects of obesity. Acta Chir Belg. 1999;99(3):135–9.

    PubMed  CAS  Google Scholar 

  111. Ozturk L, Unal M, Tamer L, Celikoglu F. The association of the severity of obstructive sleep apnea with plasma leptin levels. Arch Otolaryngol Head Neck Surg. 2003;129(5):538–40.

    Article  PubMed  Google Scholar 

  112. Sanner BM, Kollhosser P, Buechner N, Zidek W, Tepel M. Influence of treatment on leptin levels in patients with obstructive sleep apnoea. Eur Respir J. 2004;23(4):601–4.

    Article  PubMed  CAS  Google Scholar 

  113. Ulukavak Ciftci T, Kokturk O, Bukan N, Bilgihan A. Leptin and ghrelin levels in patients with obstructive sleep apnea syndrome. Respiration. 2005;72(4):395–401.

    Article  PubMed  CAS  Google Scholar 

  114. Harsch IA, Konturek PC, Koebnick C, et al. Leptin and ghrelin levels in patients with obstructive sleep apnoea: effect of CPAP treatment. Eur Respir J. 2003;22(2):251–7.

    Article  PubMed  CAS  Google Scholar 

  115. Herlein JA, Fink BD, Morgan DA, Phillips BG, Haynes WG, Sivitz WI. Leptin administration to normal rats does not alter catecholamine responsiveness to insulin-induced hypoglycemia. Metabolism. 2003;52(11):1484–90.

    Article  PubMed  CAS  Google Scholar 

  116. Phillips BG, Somers VK. Hypertension and obstructive sleep apnea. Curr Hypertens Rep. 2003;5(5):380–5.

    Article  PubMed  Google Scholar 

  117. Kuwaki T. Hypothalamic modulation of breathing. Adv Exp Med Biol. 2010;669:243–7.

    Article  PubMed  Google Scholar 

  118. Williams RH, Burdakov D. Hypothalamic orexins/hypocretins as regulators of breathing. Expert Rev Mol Med. 2008;10:e28.

    Article  PubMed  Google Scholar 

  119. Nakamura A, Zhang W, Yanagisawa M, Fukuda Y, Kuwaki T. Vigilance state-dependent attenuation of hypercapnic chemoreflex and exaggerated sleep apnea in orexin knockout mice. J Appl Physiol. 2007;102(1):241–8.

    Article  PubMed  CAS  Google Scholar 

  120. Terada J, Nakamura A, Zhang W, et al. Ventilatory long-term facilitation in mice can be observed during both sleep and wake periods and depends on orexin. J Appl Physiol. 2008;104(2):499–507.

    Article  PubMed  Google Scholar 

  121. Sunanaga J, Deng BS, Zhang W, Kanmura Y, Kuwaki T. CO2 activates orexin-containing neurons in mice. Respir Physiol Neurobiol. 2009;166(3):184–6.

    Article  PubMed  CAS  Google Scholar 

  122. Williams RH, Jensen LT, Verkhratsky A, Fugger L, Burdakov D. Control of hypothalamic orexin neurons by acid and CO2. Proc Natl Acad Sci USA. 2007;104(25):10685–90.

    Article  PubMed  CAS  Google Scholar 

  123. Igarashi N, Tatsumi K, Nakamura A, et al. Plasma orexin-A levels in obstructive sleep apnea-hypopnea syndrome. Chest. 2003;124(4):1381–5.

    Article  PubMed  CAS  Google Scholar 

  124. Busquets X, Barbe F, Barcelo A, et al. Decreased plasma levels of orexin-A in sleep apnea. Respiration. 2004;71(6):575–9.

    Article  PubMed  CAS  Google Scholar 

  125. Kanbayashi T, Kodama T, Kondo H, et al. CSF histamine contents in narcolepsy, idiopathic hypersomnia and obstructive sleep apnea syndrome. Sleep. 2009;32(2):181–7.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priyattam J. Shiromani PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Konadhode, R.R., Pelluru, D., Shiromani, P.J. (2012). Neural Circuitry Responsible for Sleep and Wakefulness. In: Shiromani, P., Horvath, T., Redline, S., Van Cauter, E. (eds) Sleep Loss and Obesity. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3492-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3492-4_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3491-7

  • Online ISBN: 978-1-4614-3492-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics