Skip to main content

Dysfunction of the Methyl-CpG-Binding Protein MeCP2 in Rett Syndrome

  • Chapter
  • First Online:

Abstract

Rett syndrome (RTT) is a neurodevelopmental disorder predominantly occurring in females with an incidence of 1:10,000 births and caused by sporadic mutations in the MECP2 gene, which encodes methyl-CpG-binding protein-2, an epigenetic transcription factor that binds methylated DNA. The clinical hallmarks include a period of apparently normal early development followed by a plateau and then subsequent frank regression. Impaired visual and aural contact often leads to an initial diagnosis of autism. The characterization of experimental models based on the loss-of-function of the mouse Mecp2 gene revealed that subtle changes in the morphology and function of brain cells and synapses have profound consequences on network activities that underlie critical brain functions. Furthermore, these experimental models have been used for successful reversals of RTT-like symptoms by genetic, pharmacological, and environmental manipulations, raising hope for novel therapeutic strategies to improve the quality of life of RTT individuals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adachi, M., Autry, A. E., Covington, H. E., III & Monteggia, L. M. (2009). MeCP2-mediated transcription repression in the basolateral amygdala may underlie heightened anxiety in a mouse model of Rett syndrome. J Neurosci 29, 4218–4227.

    PubMed  CAS  Google Scholar 

  • Alarcon, J. M., Malleret, G., Touzani, K., Vronskaya, S., Ishii, S., Kandel, E. R. & Barco, A. (2004). Chromatin acetylation, memory, and LTP are impaired in CBP+/- mice: a model for the cognitive deficit in Rubinstein-Taybi syndrome and its amelioration. Neuron 42, 947–959.

    PubMed  CAS  Google Scholar 

  • Alvarez-Saavedra, M., Saez, M. A., Kang, D., Zoghbi, H. Y. & Young, J. I. (2007). Cell-specific expression of wild-type MeCP2 in mouse models of Rett syndrome yields insight about pathogenesis. Hum Mol Genet 16, 2315–2325.

    PubMed  CAS  Google Scholar 

  • Amir, R. E., Van, d. V., I, Wan, M., Tran, C. Q., Francke, U. & Zoghbi, H. Y. (1999). Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 23, 185–188.

    Google Scholar 

  • Archer, H. L., Whatley, S. D., Evans, J. C., Ravine, D., Huppke, P., Kerr, A., Bunyan, D., Kerr, B., Sweeney, E., Davies, S. J., Reardon, W., Horn, J., MacDermot, K. D., Smith, R. A., Magee, A., Donaldson, A., Crow, Y., Hermon, G., Miedzybrodzka, Z., Cooper, D. N., Lazarou, L., Butler, R., Sampson, J., Pilz, D. T., Laccone, F. & Clarke, A. J. (2006). Gross rearrangements of the MECP2 gene are found in both classical and atypical Rett syndrome patients. J Med Genet 43, 451–456.

    PubMed  CAS  Google Scholar 

  • Armstrong, D., Dunn, J. K., Antalffy, B. & Trivedi, R. (1995). Selective dendritic alterations in the cortex of Rett syndrome. J Neuropathol Exp Neurol 54, 195–201.

    PubMed  CAS  Google Scholar 

  • Armstrong, D. D. (2002). Neuropathology of Rett syndrome. Ment Retard Dev Disabil Res Rev 8, 72–76.

    PubMed  Google Scholar 

  • Armstrong, D. D. (2005). Neuropathology of Rett syndrome. J Child Neurol 20, 747–753.

    PubMed  Google Scholar 

  • Armstrong, D. D., Dunn, K. & Antalffy, B. (1998). Decreased dendritic branching in frontal, motor and limbic cortex in Rett syndrome compared with trisomy 21. J Neuropathol Exp Neurol 57, 1013–1017.

    PubMed  CAS  Google Scholar 

  • Balthasar, N., Dalgaard, L. T., Lee, C. E., Yu, J., Funahashi, H., Williams, T., Ferreira, M., Tang, V., McGovern, R. A., Kenny, C. D., Christiansen, L. M., Edelstein, E., Choi, B., Boss, O., Aschkenasi, C., Zhang, C. Y., Mountjoy, K., Kishi, T., Elmquist, J. K. & Lowell, B. B. (2005). Divergence of melanocortin pathways in the control of food intake and energy expenditure. Cell 123, 493–505.

    PubMed  CAS  Google Scholar 

  • Bauman, M. L., Kemper, T. L. & Arin, D. M. (1995a). Microscopic observations of the brain in Rett syndrome. Neuropediatrics 26, 105–108.

    PubMed  CAS  Google Scholar 

  • Bauman, M. L., Kemper, T. L. & Arin, D. M. (1995b). Pervasive neuroanatomic abnormalities of the brain in three cases of Rett’s syndrome. Neurology 45, 1581–1586.

    PubMed  CAS  Google Scholar 

  • Bebbington, A., Anderson, A., Ravine, D., Fyfe, S., Pineda, M., de Klerk, N., Ben Zeev, B., Yatawara, N., Percy, A., Kaufmann, W. E. & Leonard, H. (2008). Investigating genotype-phenotype relationships in Rett syndrome using an international data set. Neurology 70, 868–875.

    PubMed  CAS  Google Scholar 

  • Belichenko, N. P., Belichenko, P. V. & Mobley, W. C. (2009a). Evidence for both neuronal cell autonomous and nonautonomous effects of methyl-CpG-binding protein 2 in the cerebral cortex of female mice with Mecp2 mutation. Neurobiol Dis 34, 71–77.

    PubMed  CAS  Google Scholar 

  • Belichenko, P. V. & Dahlstrom, A. (1995). Studies on the 3-dimensional architecture of dendritic spines and varicosities in human cortex by confocal laser scanning microscopy and Lucifer yellow microinjections. J Neurosci Methods 57, 55–61.

    PubMed  CAS  Google Scholar 

  • Belichenko, P. V., Oldfors, A., Hagberg, B. & Dahlstrom, A. (1994). Rett syndrome: 3-D confocal microscopy of cortical pyramidal dendrites and afferents. Neuroreport 5, 1509–1513.

    PubMed  CAS  Google Scholar 

  • Belichenko, P. V., Wright, E. E., Belichenko, N. P., Masliah, E., Li, H. H., Mobley, W. C. & Francke, U. (2009b). Widespread changes in dendritic and axonal morphology in Mecp2-mutant mouse models of Rett syndrome: evidence for disruption of neuronal networks. J Comp Neurol 514, 240–258.

    PubMed  CAS  Google Scholar 

  • Bissonnette, J. M. & Knopp, S. J. (2008). Effect of inspired oxygen on periodic breathing in methy-CpG-binding protein 2 (Mecp2) deficient mice. J Appl Physiol 104, 198–204.

    PubMed  CAS  Google Scholar 

  • Black, I. B. (1999). Trophic regulation of synaptic plasticity. J Neurobiol 41, 108–118.

    PubMed  CAS  Google Scholar 

  • Blue, M. E., Naidu, S. & Johnston, M. V. (1999a). Altered development of glutamate and GABA receptors in the basal ganglia of girls with Rett syndrome. Exp Neurol 156, 345–352.

    PubMed  CAS  Google Scholar 

  • Blue, M. E., Naidu, S. & Johnston, M. V. (1999b). Development of amino acid receptors in frontal cortex from girls with Rett syndrome. Ann Neurol 45, 541–545.

    PubMed  CAS  Google Scholar 

  • Bourtchouladze, R., Lidge, R., Catapano, R., Stanley, J., Gossweiler, S., Romashko, D., Scott, R. & Tully, T. (2003). A mouse model of Rubinstein-Taybi syndrome: defective long-term memory is ameliorated by inhibitors of phosphodiesterase 4. Proc Natl Acad Sci U S A 100, 10518–10522.

    PubMed  CAS  Google Scholar 

  • Braunschweig, D., Simcox, T., Samaco, R. C. & LaSalle, J. M. (2004). X-Chromosome inactivation ratios affect wild-type MeCP2 expression within mosaic Rett syndrome and Mecp2-/+ mouse brain. Hum Mol Genet 13, 1275–1286.

    PubMed  CAS  Google Scholar 

  • Calfa, G., Percy, A. K. & Pozzo-Miller, L. (2011). Experimental models of Rett syndrome based on Mecp2 dysfunction. Exp Biol Med (Maywood) 236, 3–19.

    CAS  Google Scholar 

  • Chahrour, M., Jung, S. Y., Shaw, C., Zhou, X., Wong, S. T., Qin, J. & Zoghbi, H. Y. (2008). MeCP2, a key contributor to neurological disease, activates and represses transcription. Science 320, 1224–1229.

    PubMed  CAS  Google Scholar 

  • Chahrour, M. & Zoghbi, H. Y. (2007). The story of Rett syndrome: from clinic to neurobiology. Neuron 56, 422–437.

    PubMed  CAS  Google Scholar 

  • Chang, Q., Khare, G., Dani, V., Nelson, S. & Jaenisch, R. (2006). The disease progression of Mecp2 mutant mice is affected by the level of BDNF expression. Neuron 49, 341–348.

    PubMed  CAS  Google Scholar 

  • Chapleau, C. A., Calfa, G. D., Lane, M. C., Albertson, A. J., Larimore, J. L., Kudo, S., Armstrong, D. L., Percy, A. K. & Pozzo-Miller, L. (2009a). Dendritic spine pathologies in hippocampal pyramidal neurons from Rett syndrome brain and after expression of Rett-associated MECP2 mutations. Neurobiol Dis 35, 219–233.

    PubMed  CAS  Google Scholar 

  • Chapleau, C. A., Larimore, J. L., Theibert, A. & Pozzo-Miller, L. (2009b). Modulation of dendritic spine development and plasticity by BDNF and vesicular trafficking: fundamental roles in neurodevelopmental disorders associated with mental retardation and autism. J Neurodev Disord 1, 185–196.

    PubMed  Google Scholar 

  • Chavrier, P., Zerial, M., Lemaire, P., Almendral, J., Bravo, R. & Charnay, P. (1988). A gene encoding a protein with zinc fingers is activated during G0/G1 transition in cultured cells. EMBO J 7, 29–35.

    PubMed  CAS  Google Scholar 

  • Chen, R. Z., Akbarian, S., Tudor, M. & Jaenisch, R. (2001). Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice. Nat Genet 27, 327–331.

    PubMed  CAS  Google Scholar 

  • Chen, W. G., Chang, Q., Lin, Y., Meissner, A., West, A. E., Griffith, E. C., Jaenisch, R. & Greenberg, M. E. (2003). Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2. Science 302, 885–889.

    PubMed  CAS  Google Scholar 

  • Cobb, S., Guy, J. & Bird, A. (2010). Reversibility of functional deficits in experimental models of Rett syndrome. Biochem Soc Trans 38, 498–506.

    PubMed  CAS  Google Scholar 

  • Collins, A. L., Levenson, J. M., Vilaythong, A. P., Richman, R., Armstrong, D. L., Noebels, J. L., Sweatt, J. D. & Zoghbi, H. Y. (2004). Mild overexpression of MeCP2 causes a progressive neurological disorder in mice. Hum Mol Genet 13, 2679–2689.

    PubMed  CAS  Google Scholar 

  • Costa, R. M., Federov, N. B., Kogan, J. H., Murphy, G. G., Stern, J., Ohno, M., Kucherlapati, R., Jacks, T. & Silva, A. J. (2002). Mechanism for the learning deficits in a mouse model of neurofibromatosis type 1. Nature 415, 526–530.

    PubMed  CAS  Google Scholar 

  • D’Cruz, J. A., Wu, C., Zahid, T., El Hayek, Y., Zhang, L. & Eubanks, J. H. (2010). Alterations of cortical and hippocampal EEG activity in MeCP2-deficient mice. Neurobiol Dis 38, 8–16.

    PubMed  Google Scholar 

  • del Gaudio, D., Fang, P., Scaglia, F., Ward, P. A., Craigen, W. J., Glaze, D. G., Neul, J. L., Patel, A., Lee, J. A., Irons, M., Berry, S. A., Pursley, A. A., Grebe, T. A., Freedenberg, D., Martin, R. A., Hsich, G. E., Khera, J. R., Friedman, N. R., Zoghbi, H. Y., Eng, C. M., Lupski, J. R., Beaudet, A. L., Cheung, S. W. & Roa, B. B. (2006). Increased MECP2 gene copy number as the result of genomic duplication in neurodevelopmentally delayed males. Genet Med 8, 784–792.

    PubMed  Google Scholar 

  • Dolen, G., Osterweil, E., Rao, B. S., Smith, G. B., Auerbach, B. D., Chattarji, S. & Bear, M. F. (2007). Correction of fragile X syndrome in mice. Neuron 56, 955–962.

    PubMed  CAS  Google Scholar 

  • Dragich, J. M., Kim, Y. H., Arnold, A. P. & Schanen, N. C. (2007). Differential distribution of the MeCP2 splice variants in the postnatal mouse brain. J Comp Neurol 501, 526–542.

    PubMed  Google Scholar 

  • Ehninger, D., Han, S., Shilyansky, C., Zhou, Y., Li, W., Kwiatkowski, D. J., Ramesh, V. & Silva, A. J. (2008a). Reversal of learning deficits in a Tsc2+/- mouse model of tuberous sclerosis. Nat Med 14, 843–848.

    PubMed  CAS  Google Scholar 

  • Ehninger, D., Li, W., Fox, K., Stryker, M. P. & Silva, A. J. (2008b). Reversing neurodevelopmental disorders in adults. Neuron 60, 950–960.

    PubMed  CAS  Google Scholar 

  • Elbashir, S. M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K. & Tuschl, T. (2001). Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498.

    PubMed  CAS  Google Scholar 

  • Ellaway, C. J., Sholler, G., Leonard, H. & Christodoulou, J. (1999). Prolonged QT interval in Rett syndrome. Arch Dis Child 80, 470–472.

    PubMed  CAS  Google Scholar 

  • Fernandez, F., Morishita, W., Zuniga, E., Nguyen, J., Blank, M., Malenka, R. C. & Garner, C. C. (2007). Pharmacotherapy for cognitive impairment in a mouse model of Down syndrome. Nat Neurosci 10, 411–413.

    PubMed  CAS  Google Scholar 

  • Fiala, J. C., Spacek, J. & Harris, K. M. (2002). Dendritic spine pathology: cause or consequence of neurological disorders? Brain Res Brain Res Rev 39, 29–54.

    PubMed  Google Scholar 

  • Friez, M. J., Jones, J. R., Clarkson, K., Lubs, H., Abuelo, D., Bier, J. A., Pai, S., Simensen, R., Williams, C., Giampietro, P. F., Schwartz, C. E. & Stevenson, R. E. (2006). Recurrent infections, hypotonia, and mental retardation caused by duplication of MECP2 and adjacent region in Xq28. Pediatrics 118, e1687–e1695.

    PubMed  Google Scholar 

  • Fyffe, S. L., Neul, J. L., Samaco, R. C., Chao, H. T., Ben Shachar, S., Moretti, P., McGill, B. E., Goulding, E. H., Sullivan, E., Tecott, L. H. & Zoghbi, H. Y. (2008). Deletion of Mecp2 in Sim1-expressing neurons reveals a critical role for MeCP2 in feeding behavior, aggression, and the response to stress. Neuron 59, 947–958.

    PubMed  CAS  Google Scholar 

  • Giacometti, E., Luikenhuis, S., Beard, C. & Jaenisch, R. (2007). Partial rescue of MeCP2 deficiency by postnatal activation of MeCP2. Proc Natl Acad Sci U S A 104, 1931–1936.

    PubMed  CAS  Google Scholar 

  • Girard, M., Couvert, P., Carrie, A., Tardieu, M., Chelly, J., Beldjord, C. & Bienvenu, T. (2001). Parental origin of de novo MECP2 mutations in Rett syndrome. Eur J Hum Genet 9, 231–236.

    PubMed  CAS  Google Scholar 

  • Glaze, D. G. (2005). Neurophysiology of Rett syndrome. J Child Neurol 20, 740–746.

    PubMed  Google Scholar 

  • Glaze, D. G., Percy, A. K., Skinner, S., Motil, K. J., Neul, J. L., Barrish, J. O., Lane, J. B., Geerts, S. P., Annese, F., Graham, J., McNair, L. & Lee, H. S. (2010). Epilepsy and the natural history of Rett syndrome. Neurology 74, 909–912.

    PubMed  CAS  Google Scholar 

  • Glaze, D. G., Schultz, R. J. & Frost, J. D. (1998). Rett syndrome: characterization of seizures versus non-seizures. Electroencephalogr Clin Neurophysiol 106, 79–83.

    PubMed  CAS  Google Scholar 

  • Guy, J., Gan, J., Selfridge, J., Cobb, S. & Bird, A. (2007). Reversal of neurological defects in a mouse model of Rett syndrome. Science 315, 1143–1147.

    PubMed  CAS  Google Scholar 

  • Guy, J., Hendrich, B., Holmes, M., Martin, J. E. & Bird, A. (2001). A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nat Genet 27, 322–326.

    PubMed  CAS  Google Scholar 

  • Hagberg, B., Aicardi, J., Dias, K. & Ramos, O. (1983). A progressive syndrome of autism, dementia, ataxia, and loss of purposeful hand use in girls: Rett’s syndrome: report of 35 cases. Ann Neurol 14, 471–479.

    PubMed  CAS  Google Scholar 

  • Hamilton, A. J. & Baulcombe, D. C. (1999). A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286, 950–952.

    PubMed  CAS  Google Scholar 

  • Hendrich, B. & Bird, A. (1998). Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol Cell Biol 18, 6538–6547.

    PubMed  CAS  Google Scholar 

  • Herdegen, T., Kiessling, M., Bele, S., Bravo, R., Zimmermann, M. & Gass, P. (1993). The KROX-20 transcription factor in the rat central and peripheral nervous systems: novel expression pattern of an immediate early gene-encoded protein. Neuroscience 57, 41–52.

    PubMed  CAS  Google Scholar 

  • Hotta, A., Cheung, A. Y., Farra, N., Vijayaragavan, K., Seguin, C. A., Draper, J. S., Pasceri, P., Maksakova, I. A., Mager, D. L., Rossant, J., Bhatia, M. & Ellis, J. (2009). Isolation of human iPS cells using EOS lentiviral vectors to select for pluripotency. Nat Methods 6, 370–376.

    PubMed  CAS  Google Scholar 

  • Isoda, K., Morimoto, M., Matsui, F., Hasegawa, T., Tozawa, T., Morioka, S., Chiyonobu, T., Nishimura, A., Yoshimoto, K. & Hosoi, H. (2010). Postnatal changes in serotonergic innervation to the hippocampus of methyl-CpG-binding protein 2-null mice. Neuroscience 165, ­1254–1260.

    PubMed  CAS  Google Scholar 

  • Jellinger, K., Armstrong, D., Zoghbi, H. Y. & Percy, A. K. (1988). Neuropathology of Rett syndrome. Acta Neuropathol 76, 142–158.

    PubMed  CAS  Google Scholar 

  • Jentarra, G. M., Olfers, S. L., Rice, S. G., Srivastava, N., Homanics, G. E., Blue, M., Naidu, S. & Narayanan, V. (2010). Abnormalities of cell packing density and dendritic complexity in the MeCP2 A140V mouse model of Rett syndrome/X-linked mental retardation. BMC Neurosci 11:19.

    PubMed  Google Scholar 

  • Jin, J., Bao, X., Wang, H., Pan, H., Zhang, Y. & Wu, X. (2008). RNAi-induced down-regulation of Mecp2 expression in the rat brain. Int J Dev Neurosci 26, 457–465.

    PubMed  CAS  Google Scholar 

  • Jugloff, D. G., Vandamme, K., Logan, R., Visanji, N. P., Brotchie, J. M. & Eubanks, J. H. (2008). Targeted delivery of an Mecp2 transgene to forebrain neurons improves the behavior of female Mecp2-deficient mice. Hum Mol Genet 17, 1386–1396.

    PubMed  CAS  Google Scholar 

  • Jung, B. P., Jugloff, D. G., Zhang, G., Logan, R., Brown, S. & Eubanks, J. H. (2003). The expression of methyl CpG binding factor MeCP2 correlates with cellular differentiation in the developing rat brain and in cultured cells. J Neurobiol 55, 86–96.

    PubMed  CAS  Google Scholar 

  • Kankirawatana, P., Leonard, H., Ellaway, C., Scurlock, J., Mansour, A., Makris, C. M., Dure, L. S., Friez, M., Lane, J., Kiraly-Borri, C., Fabian, V., Davis, M., Jackson, J., Christodoulou, J., Kaufmann, W. E., Ravine, D. & Percy, A. K. (2006). Early progressive encephalopathy in boys and MECP2 mutations. Neurology 67, 164–166.

    PubMed  CAS  Google Scholar 

  • Katz, D. M., Dutschmann, M., Ramirez, J. M. & Hilaire, G. (2009). Breathing disorders in Rett syndrome: progressive neurochemical dysfunction in the respiratory network after birth. Respir Physiol Neurobiol 168, 101–108.

    PubMed  CAS  Google Scholar 

  • Kaufmann, W. E., MacDonald, S. M. & Altamura, C. R. (2000). Dendritic cytoskeletal protein expression in mental retardation: an immunohistochemical study of the neocortex in Rett syndrome. Cereb Cortex 10, 992–1004.

    PubMed  CAS  Google Scholar 

  • Kaufmann, W. E. & Moser, H. W. (2000). Dendritic anomalies in disorders associated with mental retardation. Cereb Cortex 10, 981–991.

    PubMed  CAS  Google Scholar 

  • Kaufmann, W. E., Naidu, S. & Budden, S. (1995). Abnormal expression of microtubule-associated protein 2 (MAP-2) in neocortex in Rett syndrome. Neuropediatrics 26, 109–113.

    PubMed  CAS  Google Scholar 

  • Kaufmann, W. E., Worley, P. F., Taylor, C. V., Bremer, M. & Isakson, P. C. (1997). Cyclooxygenase-2 expression during rat neocortical development and in Rett syndrome. Brain Dev 19, 25–34.

    PubMed  CAS  Google Scholar 

  • Kimura, K., Nomura, Y. & Segawa, M. (1992). Middle and short latency somatosensory evoked potentials (SEPm, SEPs) in the Rett syndrome: chronological changes of cortical and subcortical involvements. Brain Dev 14 Suppl, S37–S42.

    PubMed  Google Scholar 

  • Kirby, R. S., Lane, J. B., Childers, J., Skinner, S. A., Annese, F., Barrish, J. O., Glaze, D. G., Macleod, P. & Percy, A. K. (2010). Longevity in Rett syndrome: analysis of the North American Database. J Pediatr 156, 135–138.

    PubMed  Google Scholar 

  • Kishi, N. & Macklis, J. D. (2004). MECP2 is progressively expressed in post-migratory neurons and is involved in neuronal maturation rather than cell fate decisions. Mol Cell Neurosci 27, 306–321.

    PubMed  CAS  Google Scholar 

  • Kline, D. D., Ogier, M., Kunze, D. L. & Katz, D. M. (2010). Exogenous brain-derived neurotrophic factor rescues synaptic dysfunction in Mecp2-null mice. J Neurosci 30, 5303–5310.

    PubMed  CAS  Google Scholar 

  • Kondo, M., Gray, L. J., Pelka, G. J., Christodoulou, J., Tam, P. P. & Hannan, A. J. (2008). Environmental enrichment ameliorates a motor coordination deficit in a mouse model of Rett syndrome--Mecp2 gene dosage effects and BDNF expression. Eur J Neurosci 27, 3342–3350.

    PubMed  Google Scholar 

  • Kriaucionis, S. & Bird, A. (2004). The major form of MeCP2 has a novel N-terminus generated by alternative splicing. Nucleic Acids Res 32, 1818–1823.

    PubMed  CAS  Google Scholar 

  • Larimore, J. L., Chapleau, C. A., Kudo, S., Theibert, A., Percy, A. K. & Pozzo-Miller, L. (2009). Bdnf overexpression in hippocampal neurons prevents dendritic atrophy caused by Rett-associated MECP2 mutations. Neurobiol Dis 34, 199–211.

    PubMed  CAS  Google Scholar 

  • Laurvick, C. L., de Klerk, N., Bower, C., Christodoulou, J., Ravine, D., Ellaway, C., Williamson, S. & Leonard, H. (2006). Rett syndrome in Australia: a review of the epidemiology. J Pediatr 148, 347–352.

    PubMed  Google Scholar 

  • Lauterborn, J. C., Lynch, G., Vanderklish, P., Arai, A. & Gall, C. M. (2000). Positive modulation of AMPA receptors increases neurotrophin expression by hippocampal and cortical neurons. J Neurosci 20, 8–21.

    PubMed  CAS  Google Scholar 

  • Lawson-Yuen, A., Liu, D., Han, L., Jiang, Z. I., Tsai, G. E., Basu, A. C., Picker, J., Feng, J. & Coyle, J. T. (2007). Ube3a mRNA and protein expression are not decreased in Mecp2R168X mutant mice. Brain Res 1180, 1–6.

    PubMed  CAS  Google Scholar 

  • Lewis, J. D., Meehan, R. R., Henzel, W. J., Maurer-Fogy, I., Jeppesen, P., Klein, F. & Bird, A. (1992). Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA. Cell 69, 905–914.

    PubMed  CAS  Google Scholar 

  • Li, W., Cui, Y., Kushner, S. A., Brown, R. A., Jentsch, J. D., Frankland, P. W., Cannon, T. D. & Silva, A. J. (2005). The HMG-CoA reductase inhibitor lovastatin reverses the learning and attention deficits in a mouse model of neurofibromatosis type 1. Curr Biol 15, 1961–1967.

    PubMed  CAS  Google Scholar 

  • Lindeberg, J., Usoskin, D., Bengtsson, H., Gustafsson, A., Kylberg, A., Soderstrom, S. & Ebendal, T. (2004). Transgenic expression of Cre recombinase from the tyrosine hydroxylase locus. Genesis 40, 67–73.

    PubMed  CAS  Google Scholar 

  • Lonetti, G., Angelucci, A., Morando, L., Boggio, E. M., Giustetto, M. & Pizzorusso, T. (2010). Early environmental enrichment moderates the behavioral and synaptic phenotype of MeCP2 null mice. Biol Psychiatry 67, 657–665.

    PubMed  Google Scholar 

  • Lu, B. (2003). BDNF and activity-dependent synaptic modulation. Learn Mem 10, 86–98.

    PubMed  Google Scholar 

  • Luikenhuis, S., Giacometti, E., Beard, C. F. & Jaenisch, R. (2004). Expression of MeCP2 in postmitotic neurons rescues Rett syndrome in mice. Proc Natl Acad Sci U S A 101, 6033–6038.

    PubMed  CAS  Google Scholar 

  • Lynch, G. & Gall, C. M. (2006). Ampakines and the threefold path to cognitive enhancement. Trends Neurosci 29, 554–562.

    PubMed  CAS  Google Scholar 

  • Mack, K. J., Cortner, J., Mack, P. & Farnham, P. J. (1992). krox 20 messenger RNA and protein expression in the adult central nervous system. Brain Res Mol Brain Res 14, 117–123.

    PubMed  CAS  Google Scholar 

  • Martinowich, K., Hattori, D., Wu, H., Fouse, S., He, F., Hu, Y., Fan, G. & Sun, Y. E. (2003). DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science 302, 890–893.

    PubMed  CAS  Google Scholar 

  • Meikle, L., Pollizzi, K., Egnor, A., Kramvis, I., Lane, H., Sahin, M. & Kwiatkowski, D. J. (2008). Response of a neuronal model of tuberous sclerosis to mammalian target of rapamycin (mTOR) inhibitors: effects on mTORC1 and Akt signaling lead to improved survival and function. J Neurosci 28, 5422–5432.

    PubMed  CAS  Google Scholar 

  • Meins, M., Lehmann, J., Gerresheim, F., Herchenbach, J., Hagedorn, M., Hameister, K. & Epplen, J. T. (2005). Submicroscopic duplication in Xq28 causes increased expression of the MECP2 gene in a boy with severe mental retardation and features of Rett syndrome. J Med Genet 42, e12.

    PubMed  CAS  Google Scholar 

  • Metcalf, B. M., Mullaney, B. C., Johnston, M. V. & Blue, M. E. (2006). Temporal shift in methyl-CpG binding protein 2 expression in a mouse model of Rett syndrome. Neuroscience 139, 1449–1460.

    PubMed  CAS  Google Scholar 

  • Minichiello, L., Korte, M., Wolfer, D., Kuhn, R., Unsicker, K., Cestari, V., Rossi-Arnaud, C., Lipp, H. P., Bonhoeffer, T. & Klein, R. (1999). Essential role for TrkB receptors in hippocampus-mediated learning. Neuron 24, 401–414.

    PubMed  CAS  Google Scholar 

  • Mnatzakanian, G. N., Lohi, H., Munteanu, I., Alfred, S. E., Yamada, T., MacLeod, P. J., Jones, J. R., Scherer, S. W., Schanen, N. C., Friez, M. J., Vincent, J. B. & Minassian, B. A. (2004). A previously unidentified MECP2 open reading frame defines a new protein isoform relevant to Rett syndrome. Nat Genet 36, 339–341.

    PubMed  CAS  Google Scholar 

  • Nag, N. & Berger-Sweeney, J. E. (2007). Postnatal dietary choline supplementation alters behavior in a mouse model of Rett syndrome. Neurobiol Dis 26, 473–480.

    PubMed  CAS  Google Scholar 

  • Nag, N., Mellott, T. J. & Berger-Sweeney, J. E. (2008). Effects of postnatal dietary choline supplementation on motor regional brain volume and growth factor expression in a mouse model of Rett syndrome. Brain Res 1237, 101–109.

    PubMed  CAS  Google Scholar 

  • Nag, N., Moriuchi, J. M., Peitzman, C. G., Ward, B. C., Kolodny, N. H. & Berger-Sweeney, J. E. (2009). Environmental enrichment alters locomotor behaviour and ventricular volume in Mecp2 1lox mice. Behav Brain Res 196, 44–48.

    PubMed  Google Scholar 

  • Nan, X., Campoy, F. J. & Bird, A. (1997). MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell 88, 471–481.

    PubMed  CAS  Google Scholar 

  • Nan, X., Cross, S. & Bird, A. (1998). Gene silencing by methyl-CpG-binding proteins. Novartis Found Symp 214, 6–16.

    PubMed  CAS  Google Scholar 

  • Nan, X., Meehan, R. R. & Bird, A. (1993). Dissection of the methyl-CpG binding domain from the chromosomal protein MeCP2. Nucleic Acids Res 21, 4886–4892.

    PubMed  CAS  Google Scholar 

  • Neul, J. L., Fang, P., Barrish, J., Lane, J., Caeg, E. B., Smith, E. O., Zoghbi, H., Percy, A. & Glaze, D. G. (2008). Specific mutations in methyl-CpG-binding protein 2 confer different severity in Rett syndrome. Neurology 70, 1313–1321.

    PubMed  CAS  Google Scholar 

  • Nithianantharajah, J. & Hannan, A. J. (2006). Enriched environments, experience-dependent plasticity and disorders of the nervous system. Nat Rev Neurosci 7, 697–709.

    PubMed  CAS  Google Scholar 

  • Ogier, M., Wang, H., Hong, E., Wang, Q., Greenberg, M. E. & Katz, D. M. (2007). Brain-derived neurotrophic factor expression and respiratory function improve after ampakine treatment in a mouse model of Rett syndrome. J Neurosci 27, 10912–10917.

    PubMed  CAS  Google Scholar 

  • Pan, J. W., Lane, J. B., Hetherington, H. & Percy, A. K. (1999). Rett syndrome: 1H spectroscopic imaging at 4.1 Tesla. J Child Neurol 14, 524–528.

    PubMed  CAS  Google Scholar 

  • Pelka, G. J., Watson, C. M., Radziewic, T., Hayward, M., Lahooti, H., Christodoulou, J. & Tam, P. P. (2006). Mecp2 deficiency is associated with learning and cognitive deficits and altered gene activity in the hippocampal region of mice. Brain 129, 887–898.

    PubMed  Google Scholar 

  • Percy, A. K., Lane, J. B., Childers, J., Skinner, S., Annese, F., Barrish, J., Caeg, E., Glaze, D. G. & Macleod, P. (2007). Rett syndrome: North American database. J Child Neurol 22, 1338–1341.

    PubMed  Google Scholar 

  • Percy, A. K., Lee, H. S., Neul, J. L., Lane, J. B., Skinner, S. A., Geerts, S. P., Annese, F., Graham, J., McNair, L., Motil, K. J., Barrish, J. O. & Glaze, D. G. (2010). Profiling scoliosis in Rett syndrome. Pediatr Res 67, 435–439.

    PubMed  Google Scholar 

  • Poo, M. M. (2001). Neurotrophins as synaptic modulators. Nat Rev Neurosci 2, 24–32.

    PubMed  CAS  Google Scholar 

  • Purpura, D. P. (1974). Dendritic spine “dysgenesis” and mental retardation. Science 186, 1126–1128.

    PubMed  CAS  Google Scholar 

  • Ramocki, M. B., Peters, S. U., Tavyev, Y. J., Zhang, F., Carvalho, C. M., Schaaf, C. P., Richman, R., Fang, P., Glaze, D. G., Lupski, J. R. & Zoghbi, H. Y. (2009). Autism and other neuropsychiatric symptoms are prevalent in individuals with MeCP2 duplication syndrome. Ann Neurol 66, 771–782.

    PubMed  CAS  Google Scholar 

  • Ramocki, M. B., Tavyev, Y. J. & Peters, S. U. (2010). The MECP2 duplication syndrome. Am J Med Genet A 152A, 1079–1088.

    PubMed  Google Scholar 

  • Reichwald, K., Thiesen, J., Wiehe, T., Weitzel, J., Poustka, W. A., Rosenthal, A., Platzer, M., Stratling, W. H. & Kioschis, P. (2000). Comparative sequence analysis of the MECP2-locus in human and mouse reveals new transcribed regions. Mamm Genome 11, 182–190.

    PubMed  CAS  Google Scholar 

  • Reiss, A. L., Faruque, F., Naidu, S., Abrams, M., Beaty, T., Bryan, R. N. & Moser, H. (1993). Neuroanatomy of Rett syndrome: a volumetric imaging study. Ann Neurol 34, 227–234.

    PubMed  CAS  Google Scholar 

  • Rett, A. (1966). Über ein eigenartiges hirnatrophisches Syndrom bei Hyperammonämie im Kindesalter [On a unusual brain atrophy syndrome in hyperammonemia in childhood]. Wien Med Wochenschr 116, 723–726.

    PubMed  CAS  Google Scholar 

  • Ricceri, L., De Filippis, B. & Laviola, G. (2008). Mouse models of Rett syndrome: from behavioural phenotyping to preclinical evaluation of new therapeutic approaches. Behav Pharmacol 19, 501–517.

    PubMed  CAS  Google Scholar 

  • Rios, M., Fan, G., Fekete, C., Kelly, J., Bates, B., Kuehn, R., Lechan, R. M. & Jaenisch, R. (2001). Conditional deletion of brain-derived neurotrophic factor in the postnatal brain leads to obesity and hyperactivity. Mol Endocrinol 15, 1748–1757.

    PubMed  CAS  Google Scholar 

  • Ronnett, G. V., Leopold, D., Cai, X., Hoffbuhr, K. C., Moses, L., Hoffman, E. P. & Naidu, S. (2003). Olfactory biopsies demonstrate a defect in neuronal development in Rett’s syndrome. Ann Neurol 54, 206–218.

    PubMed  CAS  Google Scholar 

  • Roux, J. C., Dura, E., Moncla, A., Mancini, J. & Villard, L. (2007). Treatment with desipramine improves breathing and survival in a mouse model for Rett syndrome. Eur J Neurosci 25, 1915–1922.

    PubMed  Google Scholar 

  • Roux, J. C., Panayotis, N., Dura, E. & Villard, L. (2010). Progressive noradrenergic deficits in the locus coeruleus of Mecp2 deficient mice. J Neurosci Res 88, 1500–1509.

    PubMed  CAS  Google Scholar 

  • Rueda, N., Florez, J. & Martinez-Cue, C. (2008). Chronic pentylenetetrazole but not donepezil treatment rescues spatial cognition in Ts65Dn mice, a model for Down syndrome. Neurosci Lett 433, 22–27.

    PubMed  CAS  Google Scholar 

  • Samaco, R. C., Fryer, J. D., Ren, J., Fyffe, S., Chao, H. T., Sun, Y., Greer, J. J., Zoghbi, H. Y. & Neul, J. L. (2008). A partial loss of function allele of methyl-CpG-binding protein 2 predicts a human neurodevelopmental syndrome. Hum Mol Genet 17, 1718–1727.

    PubMed  CAS  Google Scholar 

  • Samaco, R. C., Hogart, A. & LaSalle, J. M. (2005). Epigenetic overlap in autism-spectrum neurodevelopmental disorders: MECP2 deficiency causes reduced expression of UBE3A and GABRB3. Hum Mol Genet 14, 483–492.

    PubMed  CAS  Google Scholar 

  • Samaco, R. C., Mandel-Brehm, C., Chao, H. T., Ward, C. S., Fyffe-Maricich, S. L., Ren, J., Hyland, K., Thaller, C., Maricich, S. M., Humphreys, P., Greer, J. J., Percy, A., Glaze, D. G., Zoghbi, H. Y. & Neul, J. L. (2009). Loss of MeCP2 in aminergic neurons causes cell-autonomous defects in neurotransmitter synthesis and specific behavioral abnormalities. Proc Natl Acad Sci U S A 106, 21966–21971.

    PubMed  CAS  Google Scholar 

  • Samaco, R. C., Nagarajan, R. P., Braunschweig, D. & LaSalle, J. M. (2004). Multiple pathways regulate MeCP2 expression in normal brain development and exhibit defects in autism-spectrum disorders. Hum Mol Genet 13, 629–639.

    PubMed  CAS  Google Scholar 

  • Sauer, B. (1998). Inducible gene targeting in mice using the Cre/lox system. Methods 14, 381–392.

    PubMed  CAS  Google Scholar 

  • Schwenk, F., Baron, U. & Rajewsky, K. (1995). A cre-transgenic mouse strain for the ubiquitous deletion of loxP-flanked gene segments including deletion in germ cells. Nucleic Acids Res 23, 5080–5081.

    PubMed  CAS  Google Scholar 

  • Scott, M. M., Wylie, C. J., Lerch, J. K., Murphy, R., Lobur, K., Herlitze, S., Jiang, W., Conlon, R. A., Strowbridge, B. W. & Deneris, E. S. (2005). A genetic approach to access serotonin neurons for in vivo and in vitro studies. Proc Natl Acad Sci U S A 102, 16472–16477.

    PubMed  CAS  Google Scholar 

  • Shahbazian, M., Young, J., Yuva-Paylor, L., Spencer, C., Antalffy, B., Noebels, J., Armstrong, D., Paylor, R. & Zoghbi, H. (2002). Mice with truncated MeCP2 recapitulate many Rett syndrome features and display hyperacetylation of histone H3. Neuron 35, 243–254.

    PubMed  CAS  Google Scholar 

  • Stearns, N. A., Schaevitz, L. R., Bowling, H., Nag, N., Berger, U. V. & Berger-Sweeney, J. (2007). Behavioral and anatomical abnormalities in Mecp2 mutant mice: a model for Rett syndrome. Neuroscience 146, 907–921.

    PubMed  CAS  Google Scholar 

  • Swanberg, S. E., Nagarajan, R. P., Peddada, S., Yasui, D. H. & LaSalle, J. M. (2009). Reciprocal co-regulation of EGR2 and MECP2 is disrupted in Rett syndrome and autism. Hum Mol Genet 18, 525–534.

    PubMed  CAS  Google Scholar 

  • Tao, J., Wu, H. & Sun, Y. E. (2009). Deciphering Rett syndrome with mouse genetics, epigenomics, and human neurons. Int Rev Neurobiol 89, 147–160.

    PubMed  CAS  Google Scholar 

  • Tate, P., Skarnes, W. & Bird, A. (1996). The methyl-CpG binding protein MeCP2 is essential for embryonic development in the mouse. Nat Genet 12, 205–208.

    PubMed  CAS  Google Scholar 

  • Trappe, R., Laccone, F., Cobilanschi, J., Meins, M., Huppke, P., Hanefeld, F. & Engel, W. (2001). MECP2 mutations in sporadic cases of Rett syndrome are almost exclusively of paternal origin. Am J Hum Genet 68, 1093–1101.

    PubMed  CAS  Google Scholar 

  • Tronche, F., Kellendonk, C., Kretz, O., Gass, P., Anlag, K., Orban, P. C., Bock, R., Klein, R. & Schutz, G. (1999). Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety. Nat Genet 23, 99–103.

    PubMed  CAS  Google Scholar 

  • Tropea, D., Giacometti, E., Wilson, N. R., Beard, C., McCurry, C., Fu, D. D., Flannery, R., Jaenisch, R. & Sur, M. (2009). Partial reversal of Rett Syndrome-like symptoms in MeCP2 mutant mice. Proc Natl Acad Sci U S A 106, 2029–2034.

    PubMed  CAS  Google Scholar 

  • Tyler, W. J., Alonso, M., Bramham, C. R. & Pozzo-Miller, L. D. (2002). From acquisition to consolidation: on the role of brain-derived neurotrophic factor signaling in hippocampal-dependent learning. Learn Mem 9, 224–237.

    PubMed  Google Scholar 

  • van Praag, H., Kempermann, G. & Gage, F. H. (2000). Neural consequences of environmental enrichment. Nat Rev Neurosci 1, 191–198.

    PubMed  Google Scholar 

  • van Woerden, G. M., Harris, K. D., Hojjati, M. R., Gustin, R. M., Qiu, S., de Avila, F. R., Jiang, Y. H., Elgersma, Y. & Weeber, E. J. (2007). Rescue of neurological deficits in a mouse model for Angelman syndrome by reduction of alphaCaMKII inhibitory phosphorylation. Nat Neurosci 10, 280–282.

    PubMed  Google Scholar 

  • Wang, H., Chan, S. A., Ogier, M., Hellard, D., Wang, Q., Smith, C. & Katz, D. M. (2006). Dysregulation of brain-derived neurotrophic factor expression and neurosecretory function in Mecp2 null mice. J Neurosci 26, 10911–10915.

    PubMed  CAS  Google Scholar 

  • Ward, B. C., Agarwal, S., Wang, K., Berger-Sweeney, J. & Kolodny, N. H. (2008). Longitudinal brain MRI study in a mouse model of Rett Syndrome and the effects of choline. Neurobiol Dis 31, 110–119.

    PubMed  CAS  Google Scholar 

  • Ward, B. C., Kolodny, N. H., Nag, N. & Berger-Sweeney, J. E. (2009). Neurochemical changes in a mouse model of Rett syndrome: changes over time and in response to perinatal choline nutritional supplementation. J Neurochem 108, 361–371.

    PubMed  CAS  Google Scholar 

  • Williams, J. M., Beckmann, A. M., Mason-Parker, S. E., Abraham, W. C., Wilce, P. A. & Tate, W. P. (2000). Sequential increase in Egr-1 and AP-1 DNA binding activity in the dentate gyrus following the induction of long-term potentiation. Brain Res Mol Brain Res 77, 258–266.

    PubMed  CAS  Google Scholar 

  • Wood, L., Gray, N. W., Zhou, Z., Greenberg, M. E. & Shepherd, G. M. (2009). Synaptic circuit abnormalities of motor-frontal layer 2/3 pyramidal neurons in an RNA interference model of methyl-CpG-binding protein 2 deficiency. J Neurosci 29, 12440–12448.

    PubMed  CAS  Google Scholar 

  • Yoshikawa, H., Kaga, M., Suzuki, H., Sakuragawa, N. & Arima, M. (1991). Giant somatosensory evoked potentials in the Rett syndrome. Brain Dev 13, 36–39.

    PubMed  CAS  Google Scholar 

  • Young, D., Nagarajan, L., de Klerk, N., Jacoby, P., Ellaway, C. & Leonard, H. (2007). Sleep problems in Rett syndrome. Brain Dev 29, 609–616.

    PubMed  Google Scholar 

  • Young, J. I., Hong, E. P., Castle, J. C., Crespo-Barreto, J., Bowman, A. B., Rose, M. F., Kang, D., Richman, R., Johnson, J. M., Berget, S. & Zoghbi, H. Y. (2005). Regulation of RNA splicing by the methylation-dependent transcriptional repressor methyl-CpG binding protein 2. Proc Natl Acad Sci U S A 102, 17551–17558.

    PubMed  CAS  Google Scholar 

  • Young, J. I. & Zoghbi, H. Y. (2004). X-chromosome inactivation patterns are unbalanced and affect the phenotypic outcome in a mouse model of rett syndrome. Am J Hum Genet 74, 511–520.

    PubMed  CAS  Google Scholar 

  • Zeng, L. H., Xu, L., Gutmann, D. H. & Wong, M. (2008). Rapamycin prevents epilepsy in a mouse model of tuberous sclerosis complex. Ann Neurol 63, 444–453.

    PubMed  CAS  Google Scholar 

  • Zheng, W. H. & Quirion, R. (2004). Comparative signaling pathways of insulin-like growth factor-1 and brain-derived neurotrophic factor in hippocampal neurons and the role of the PI3 kinase pathway in cell survival. J Neurochem 89, 844–852.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Carolyn Schanen for useful comments on the manuscript. This is supported by NIH grants from NINDS (NS40593, NS057780, NS-065027) and NICHD (U54 grant HD061222 and IDDRC grant HD38985), IRSF, and the Civitan Foundation. The authors acknowledge the gracious participation and provision of information by families in the Rare Disease Natural History Study for which Dr. Mary Lou Oster-Granite, Health Scientist Administrator at NICHD, provided invaluable guidance, support, and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas Pozzo-Miller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Calfa, G., Percy, A.K., Pozzo-Miller, L. (2012). Dysfunction of the Methyl-CpG-Binding Protein MeCP2 in Rett Syndrome. In: Minarovits, J., Niller, H. (eds) Patho-Epigenetics of Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3345-3_3

Download citation

Publish with us

Policies and ethics