Skip to main content

Neuroimage as a Biomechanical Model: Toward New Computational Biomechanics of the Brain

  • Conference paper
  • First Online:
Computational Biomechanics for Medicine

Abstract

In recent years, predicting brain deformations during surgery using methods of computational biomechanics has become a viable alternative to purely image-based techniques. However, the difficulties with patient-specific computational grid generation prevent the widespread application of biomechanical modeling in medicine. For more efficient computational grid generation, we propose a statistical meshless model based on fuzzy tissue classification and mechanical property assignment, and meshless (i.e., based on the unstructured cloud of points that do not form elements) solution method. Instead of hard segmentation that divides intracranial area into nonoverlapping, constituent regions we use statistical classification to get the fuzzy membership functions of tissue classes for each voxel. Material properties are assigned to integration points based on this soft classification. Verification example shows that the proposed model gives equivalent results—difference in computed brain deformations of at most 0.2 mm—to the finite element method (FEM) and can certainly be considered for use in future simulations. Based on this concept, patient-specific computational models can be more efficiently and robustly generated in the clinical workflow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ferrant, M., Nabavi, A., Macq, B., Black, P.M., Jolesz, F.A., Kikinis, R., Warfield, S.K.: Serial registration of interoperative MR images of the brain. Med. Image Anal. 6, 337–359 (2002)

    Article  Google Scholar 

  2. Bucholz, R., MacNeil, W., McDurmont, L.: The operating room of the future. Clin. Neurosurg. 51, 228–237 (2004)

    Google Scholar 

  3. Warfield, S.K., Haker, S.J., Talos, I.F., Kemper, C.A., Weisenfeld, N., Mewes, A.U.J., Goldberg-Zimring, D., Zou, K.H., Westin, C.F., Wells, W.M., Tempany, C.M.C., Golby, A., Black, P.M., Jolesz, F.A., Kikinis, R.: Capturing intraoperative deformations: Research experience at Brigham and Women's hospital. Med. Image Anal. 9, 145–162 (2005)

    Article  Google Scholar 

  4. Nakaji, P., Spetzler, R.F.: Innovations in surgical approach: the marriage of technique, technology, and judgment. Clin. Neurosurg. 51, 177–185 (2004)

    Google Scholar 

  5. Grosland, N.M., Shivanna, K.H., Magnotta, V.A., Kallemeyn, N.A., DeVries, N.A., Tadepalli, S.C., Lisle, C.: IA-FEMesh: an open-source, interactive, multiblock approach to anatomic finite element model development. Comput. Meth. Programs Biomed. 94, 96–107 (2009)

    Article  Google Scholar 

  6. Belytschko, T.: Meshless methods: an overview and recent developments. Comput. Meth. Appl. Mech. Eng. 139, 3 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Miller, K., Wittek, A., Joldes, G., Horton, A., Dutta-Roy, T., Berger, J., Morriss, L.: Modelling brain deformations for computer-integrated neurosurgery. Int. J. Numer. Meth. Biomed. Eng. 26, 117–138 (2010)

    Article  MATH  Google Scholar 

  8. Horton, A., Wittek, A., Joldes, G.R., Miller, K.: A meshless total Lagrangian explicit dynamics algorithm for surgical simulation. Int. J. Numer. Meth. Biomed. Eng. 26, 977–998 (2010)

    Article  MATH  Google Scholar 

  9. Lancaster, P., Salkauskas, K.: Surfaces generated by moving least squares methods. Math. Comput. 37, 141–158 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  10. Pham, D.L., Prince, J.L.: Adaptive fuzzy segmentation of magnetic resonance images. IEEE Trans. Med. Imag. 18, 737–752 (1999)

    Article  Google Scholar 

  11. Smith, S.M.: Fast robust automated brain extraction. Hum. Brain Mapp. 17, 143–155 (2002)

    Article  Google Scholar 

  12. Joldes, G.R., Wittek, A., Miller, K.: Non-locking tetrahedral finite element for surgical simulation. Comm. Numer. Meth. Eng. 25(7), 827–836 (2008)

    Article  MathSciNet  Google Scholar 

  13. Christensen, G.E., Johnson, H.J.: Consistent image registration. IEEE Trans. Med. Imag. 20, 568–582 (2001)

    Article  Google Scholar 

  14. Wittek, A., Miller, K., Kikinis, R., Warfield, S.: Patient-specific model of brain deformation: application to medical image registration. J. Biomech. 40, 919–929 (2007)

    Article  Google Scholar 

  15. Joldes, G.R., Wittek, A., Miller, K.: Suite of finite element algorithms for accurate computation of soft tissue deformation for surgical simulation. Med. Image Anal. 13, 912–919 (2009)

    Article  Google Scholar 

  16. Warfield, S.K., Ferrant, M., Gallez, X., Nabavi, A., Jolesz, F.A., Kikinis, R.: Real-time biomechanical simulation of volumetric brain deformation for image guided neurosurgery. SC 2000: High Performance Networking and Computing Conference 230, 1-16 (2000)

    Google Scholar 

  17. Joldes, G., Wittek, A., Couton, M., Warfield, S., Miller, K.: Real-Time Prediction of Brain Shift Using Nonlinear Finite Element Algorithms. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2009, 300-307 (2009)

    Google Scholar 

  18. Clatz, O., Delingette, H., Bardinet, E., Dormont, D., Ayache, N.: Patient specific biomechanical model of the brain: application to Parkinson's disease procedure. In: International Symposium on Surgery Simulation and Soft Tissue Modeling (IS4TM'03) (2003)

    Google Scholar 

  19. Škrinjar, O., Nabavi, A., Duncan, J.: A stereo-guided biomechanical model for volumetric deformation analysis. pp. 95-102 (2001)

    Google Scholar 

  20. Miller, K.: Biomechanics of Brain for Computer Integrated Surgery. Publishing House of Warsaw University of Technology, Warsaw (2002)

    Google Scholar 

  21. Miller, K.: Biomechanics of the Brain. Springer, New York (2011)

    Book  Google Scholar 

  22. Miga, M.I., Sinha, T.K., Cash, D.M., Galloway, R.L., Weil, R.J.: Cortical surface registration for image-guided neurosurgery using laser-range scanning. IEEE Trans. Med. Imag. 22, 973–985 (2003)

    Article  Google Scholar 

  23. Miller, K., Joldes, G., Lance, D., Wittek, A.: Total Lagrangian explicit dynamics finite element algorithm for computing soft tissue deformation. Comm. Numer. Meth. Eng. 23, 121–134 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Joldes, G.R., Wittek, A., Miller, K., Morriss, L.: Realistic and efficient brain-skull interaction model for brain shift computation. Computational Biomechanics for Medicine III Workshop, MICCAI (2008)

    Google Scholar 

  25. Joldes, G.R., Wittek, A., Miller, K.: Computation of intra-operative brain shift using dynamic relaxation. Comput. Meth. Appl. Mech. Eng. 198, 3313–3320 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The first author is an SIRF scholar in the University of Western Australia during the completion of this research. The financial support of National Health and Medical Research Council (NHMRC Grant No.1006031) and Australian Research Council (ARC Grant No.DP1092893) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johnny Y. Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this paper

Cite this paper

Zhang, J.Y., Joldes, G.R., Wittek, A., Horton, A., Warfield, S.K., Miller, K. (2012). Neuroimage as a Biomechanical Model: Toward New Computational Biomechanics of the Brain. In: Nielsen, P., Wittek, A., Miller, K. (eds) Computational Biomechanics for Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3172-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3172-5_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3171-8

  • Online ISBN: 978-1-4614-3172-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics