Skip to main content

Medium to High Throughput Screening: Microfabrication and Chip-Based Technology

  • Chapter
Book cover New Technologies for Toxicity Testing

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 745))

Abstract

Medium to high throughput screening for toxicity testing can provide a wealth of information with significant time and cost savings. New technologies, such as microfabrication, microfluidics and chip-based technology, combined with advanced cell culture and detection techniques, open up new opportunities in toxicity testing. In this chapter, fundamentals of microfabrication and microfluidics are discussed with a focus on the broad and novel applications on toxicity studies enabled by these technologies. Emphasis is placed on microscale cell and tissue culture models for medium and high throughput systemic toxicity studies in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ziaie B, Baldi A, Lei M et al. Hard and soft micromachining for BioMEMS: review of techniques and examples of applications in microfluidics and drug delivery. Adv Drug Deliv Rev 2004; 56:145–172.

    PubMed  CAS  Google Scholar 

  2. Madou MJ. Fundamentals of Microfabrication: The Science of Miniaturization, 2nd ed. Boca Raton: CRC Press, 2002.

    Google Scholar 

  3. Haber C. Microfluidics in commercial applications; an industry perspective. Lab Chip 2006; 6:1118–1121.

    PubMed  CAS  Google Scholar 

  4. Xia Y, Whitesides GM. Soft lithography. Annu Rev Mat Sci 1998; 28:153–184.

    CAS  Google Scholar 

  5. Whitesides GM, Ostuni E, Takayama S et al. Soft lithography in biology and biochemistry. Annu Rev Biomed Eng 2001; 3:335–373.

    PubMed  CAS  Google Scholar 

  6. Jaeger CJ. Introduction to Microelectronic Fabrication. Upper Saddle River, New Jersey: Prentice Hall, 2002.

    Google Scholar 

  7. Campbell SA. The Science and Engineering of Microelectronic Fabrication. New York: Oxford University Press, 2001.

    Google Scholar 

  8. Smith DL. Thin-Film Deposition: Principles and Practice. New York: McGraw-Hill, 1995.

    Google Scholar 

  9. Wu CC, Saito T, Yasukawa T et al. Microfluidic chip integrated with amperometric detector array for in situ estimating oxygen consumption characteristics of single bovine embryos. Sensor Actuator B 2007; 125:680–687.

    Google Scholar 

  10. Ehret R, Baumann W, Brischwein M et al. Monitoring of cellular behaviour by impedance measurements on interdigitated electrode structures. Biosens Bioelectron 1997; 12:29–41.

    PubMed  CAS  Google Scholar 

  11. Voldman J, Gray ML, Schmidt MA. Microfabrication in biology and medicine. Annu Rev Biomed Eng 1999; 1:401–425.

    PubMed  CAS  Google Scholar 

  12. Qin D, Xia Y, Whitesides GM. Rapid prototyping of complex structures with feature sizes larger than 20 μm. Adv Mater 1996; 8:917–919.

    CAS  Google Scholar 

  13. Xia Y, Kim E, Zhao XM et al. Complex optical surfaces formed by replica molding against elastomeric masters. Science 1996; 273:347–349.

    PubMed  CAS  Google Scholar 

  14. Becker H, Heim U. Hot embossing as a method for the fabrication of polymer high aspect ratio structures. Sensor Actuator A 2000; 83:130–135.

    Google Scholar 

  15. Wilbur JL, Kumar A, Kim E et al. Microfabrication by microcontact printing of self-assembled monolayers. Adv Mater 1994; 6:600–604.

    CAS  Google Scholar 

  16. Biebuyck HA, Larsen NB, Delamarche E et al. Lithography beyond light: microcontact printing with monolayer resists. IBM J Res Dev 1997; 41:159–170.

    CAS  Google Scholar 

  17. Xia Y, Zhao XM, Kim E et al. A selective etching solution for use with patterned self-assembled monolayers of alkanethiolates on gold. Chem Mater 1995; 7:2332–2337.

    CAS  Google Scholar 

  18. Drelich J, Miller JD, Kumar A et al. Wetting characteristics of liquid drops at heterogeneous surfaces. Colloids and Surfaces A 1994; 93:1–13.

    CAS  Google Scholar 

  19. Jackman RJ, Wilbur JL, Whitesides GM. Fabrication of submicrometer features on curved substrates by microcontact printing. Science 1995; 269:664–666.

    PubMed  CAS  Google Scholar 

  20. Jeon NL, Nuzzo RG, Xia Y et al. Patterned self-assembled monolayers formed by microcontact printing direct selective metallization by chemical vapor deposition on planar and nonplanar substrates. Langmuir 1995; 11:3024–3026.

    CAS  Google Scholar 

  21. Danosky TR, McFadden PN. Biosensors based on the chromatic activities of living, naturally pigmented cells: digital image processing of the dynamics of fish melanophores. Biosens Bioelectron 1997; 12:925–936.

    CAS  Google Scholar 

  22. Wu MH, Huang SB, Cui ZF et al. Development of perfusion-based micro 3-D cell culture platform and its application for high throughput drug testing. Sensor Actuator B 2008; 129:231–240.

    Google Scholar 

  23. Lee PJ, Gaige TA, Ghorashian N et al. Microfluidic tissue model for live cell screening. Biotechnol Prog 2007; 23:946–951.

    PubMed  CAS  Google Scholar 

  24. Liu D, Wang L, Zhong R et al. Parallel microfluidic networks for studying cellular response to chemical modulation. J Biotechnol 2007; 131:286–292.

    PubMed  CAS  Google Scholar 

  25. Koh WG, Pishko MV. Fabrication of cell-containing hydrogel microstructures inside microfluidic devices that can be used as cell-based biosensors. Anal Bioanal Chem 2006; 385:1389–1397.

    PubMed  CAS  Google Scholar 

  26. Park JY, Hwang CM, Lee SH et al. Gradient generation by an osmotic pump and the behavior of human mesenchymal stem cells under the fetal bovine serum concentration gradient. Lab Chip 2007; 7:1673–1680.

    PubMed  CAS  Google Scholar 

  27. Kim JY, Park H, Kwon KH et al. A cell culturing system that integrates the cell loading function on a single platform and evaluation of the pulsatile pumping effect on cells. Biomed Microdevices 2008; 10:11–20.

    PubMed  CAS  Google Scholar 

  28. Wu MH, Huang SB, Cui Z et al. A high throughput perfusion-based microbioreactor platform integrated with pneumatic micropumps for three-dimensional cell culture. Biomed Microdevices 2008; 10:309–319.

    PubMed  Google Scholar 

  29. Walker GM, Monteiro-Riviere N, Rouse J et al. A linear dilution microfluidic device for cytotoxicity assays. Lab Chip 2007; 7:226–232.

    PubMed  CAS  Google Scholar 

  30. Frisk T, Rydholm S, Liebmann T et al. A microfluidic device for parallel 3-D cell cultures in asymmetric environments. Electrophoresis 2007; 28:4705–4712.

    PubMed  CAS  Google Scholar 

  31. Yu H, Alexander CM, Beebe DJ. A plate reader-compatible microchannel array for cell biology assays. Lab Chip 2007; 7:388–391.

    PubMed  CAS  Google Scholar 

  32. Beske OE, Goldbard S. High-throughput cell analysis using multiplexed array technologies. Drug Discov Today 2002; 7(18 Suppl):S131–135.

    Google Scholar 

  33. Bruchez M Jr, Moronne M, Gin P et al. Semiconductor nanocrystals as fluorescent biological labels. Science 1998; 281:2013–2016.

    PubMed  CAS  Google Scholar 

  34. Chan WCW, Nile S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998; 281:2016–2018.

    PubMed  CAS  Google Scholar 

  35. Han M, Gao X, Su JZ et al. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol 2001; 19:631–635.

    PubMed  CAS  Google Scholar 

  36. Daunert S, Barrett G, Feliciano JS et al. Genetically engineered whole-cell sensing systems: coupling biological recognition with reporter genes. Chem Rev 2000; 100:2705–2738.

    PubMed  CAS  Google Scholar 

  37. Gribbon P, Sewing A. Fluorescence readouts in HTS: no gain without pain? Drug Discov Today 2003; 8:1035–1043.

    PubMed  CAS  Google Scholar 

  38. Sundberg SA. High-throughput and ultra-high-throughput screening: solution-and cell-based approaches. Curr Opin Biotech 2000; 11:47–53.

    PubMed  CAS  Google Scholar 

  39. Wolff M, Wiedenmann J, Nienhaus GU et al. Novel fluorescent proteins for high-content screening. Drug Discov Today 2006; 11:1054–1060.

    PubMed  CAS  Google Scholar 

  40. Barrett KL, Willingham JM, Garvin AJ et al. Advances in cytochemical methods for detection of apoptosis. J Histochem Cytochem 2001; 49:821–832.

    PubMed  CAS  Google Scholar 

  41. Xing JZ, Zhu L, Gabos S et al. Microelectronic cell sensor assay for detection of cytotoxicity and prediction of acute toxicity. Toxicol In Vitro 2006; 20:995–1004.

    PubMed  CAS  Google Scholar 

  42. Zucco F, De Angelis I, Testai E et al. Toxicology investigations with cell culture systems: 20 years after. Toxicol In Vitro 2004; 18:153–163.

    PubMed  CAS  Google Scholar 

  43. Hertzberg RP, Pope AJ. High-throughput screening: new technology for the 21st century. Curr Opin Chem Biol 2000; 4:445–451.

    PubMed  CAS  Google Scholar 

  44. Takanishi CL, Bykova EA, Cheng W et al. GFP-based FRET analysis in live cells. Brain Res 2006; 1091:132–139.

    PubMed  CAS  Google Scholar 

  45. Mahajan NP, Harrison-Shostak DC, Michaux J et al. Novel mutant green fluorescent protein protease substrates reveal the activation of specific caspases during apoptosis. Chem Biol 1999; 6:401–409.

    PubMed  CAS  Google Scholar 

  46. Xu X, Gerard ALV, Huang BCB et al. Detection of programmed cell death using fluorescence energy transfer. Nucleic Acids Res 1998; 26:2034–2035.

    PubMed  CAS  Google Scholar 

  47. Abraham VC, Taylor DL, Haskins JR. High content screening applied to large-scale cell biology. Trends Biotechnol 2004; 22:15–22.

    PubMed  CAS  Google Scholar 

  48. Paparella M, Kolossov E, Fleischmann BK et al. The use of quantitative image analysis in the assessment of in vitro embryotoxicity endpoints based on a novel embryonic stem cell clone with endoderm-related GFP expression. Toxicol In Vitro 2002; 16:589–597.

    PubMed  CAS  Google Scholar 

  49. Haney SA, LaPan P, Pan J et al. High-content screening moves to the front of the line. Drug Discov Today 2006; 11:889–894.

    PubMed  CAS  Google Scholar 

  50. Ramm P. Image-based screening: a technology in transition. Curr Opin Biotechnol 2005; 16:41–48.

    PubMed  CAS  Google Scholar 

  51. Ziegler C. Cell-based biosensors. Fresenius J Anal Chem 2000; 366:552–559.

    PubMed  CAS  Google Scholar 

  52. Giaever I, Keese CR. Monitoring fibroblast behavior in tissue culture with an applied electric field. Proc Natl Acad Sci USA 1984; 81:3761–3764.

    PubMed  CAS  Google Scholar 

  53. Fromherz P, Offenhausser A, Vetter T et al. A neuron-silicon junction: a Retzius cell of the leech on an insulated-gate field-effect transistor. Science 1991; 252:1290–1293.

    PubMed  CAS  Google Scholar 

  54. Gross GW, Harsch A, Rhoades BK et al. Odor, drug and toxin analysis with neuronal networks in vitro: extracellular array recording of network responses. Biosens Bioelectron 1997; 12:373–393.

    PubMed  CAS  Google Scholar 

  55. Jahnsen H, Kristensen BW, Thiebaud P et al. Coupling of organotypic brain slice cultures to silicon-based arrays of electrodes. Methods 1999; 18:160–172.

    PubMed  CAS  Google Scholar 

  56. Meyer T, Boven KH, Gunther E et al. Micro-electrode arrays in cardiac safety pharmacology: a novel tool to study QT interval prolongation. Drug Safety 2004; 27:763–772.

    PubMed  CAS  Google Scholar 

  57. Rabinowitz JD, Rigler P, Carswell-Crumpton C et al. Screening for novel drug effects with a microphysiometer: a potent effect of clofilium unrelated to potassium channel blockade. Life Sci 1997; 61:PL87–PL94.

    PubMed  CAS  Google Scholar 

  58. Braun RD, Lanzen JL, Snyder SA et al. Comparison of tumor and normal tissue oxygen tension measurements using OxyLite or microelectrodes in rodents. Am J Physiol 2001; 280:H2533–H2544.

    CAS  Google Scholar 

  59. Mueller-Klieser W. Three-dimensional cell cultures: from molecular mechanisms to clinical applications. Am J Physiol 1997; 273:C1109–1123.

    PubMed  CAS  Google Scholar 

  60. Abbott A. Biology’s new dimension. Nature 2003; 424:870–872.

    PubMed  CAS  Google Scholar 

  61. Griffith LG, Swartz MA. Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol 2006; 7:211–224.

    PubMed  CAS  Google Scholar 

  62. Mueller-Klieser W. Three-dimensional cell cultures: from molecular mechanisms to clinical applications. Am J Physiol 1997; 273:C1109–C1123.

    PubMed  CAS  Google Scholar 

  63. Smitskamp-Wilms E, Pinedo HM, Veerman G et al. Postconfluent multilayered cell line cultures for selective screening of gemcitabine. Eur J Cancer 1998; 34:921–926.

    PubMed  CAS  Google Scholar 

  64. Kobayashi H, Man S, Graham CH et al. Acquired multicellular-mediated resistance to alkylating agents in cancer. Proc Natl Acad Sci USA 1993; 90:3294–3298.

    PubMed  CAS  Google Scholar 

  65. Ries LA, Wingo PA, Miller DS et al. The annual report to the nation on the status of cancer, 1973-1997, with a special section on colorectal cancer. Cancer 2000; 88:2398–2424.

    PubMed  CAS  Google Scholar 

  66. Yang Y, Basu S, Tomasko DL et al. Fabrication of well-defined PLGA scaffolds using novel microembossing and carbon dioxide bonding. Biomaterials 2005; 26:2585–2594.

    PubMed  CAS  Google Scholar 

  67. Borenstein J, Whyte JL, Badamgarav E et al. Physician practice patterns in the treatment of isolated systolic hypertension in a primary care setting. J Clin Hypertens 2002; 4:93–100.

    Google Scholar 

  68. Tan W, Desai TA. Layer-by-layer microfluidics for biomimetic three-dimensional structures. Biomaterials 2004; 25:1355–1364.

    PubMed  CAS  Google Scholar 

  69. Powers MJ, Domansky K, Kaazempur-Mofrad MR et al. A microfabricated array bioreactor for perfused 3D liver culture. Biotechnol Bioeng 2002; 78:257–269.

    PubMed  CAS  Google Scholar 

  70. Powers MJ, Janigian DM, Wack KE et al. Functional behavior of primary rat liver cells in a three-dimensional perfused microarray bioreactor. Tissue Eng 2002; 8:499–513.

    PubMed  Google Scholar 

  71. Ostrovidov S, Jiang J, Sakai Y et al. Membrane-based PDMS microbioreactor for perfused 3D primary rat hepatocyte cultures. Biomed Microdevices 2004; 6:279–287.

    PubMed  CAS  Google Scholar 

  72. Leclerc E, Sakai Y, Fujii T. Cell culture in 3-dimensional microfluidic structure of PDMS. Biomed Microdevices 2003; 5:109–114.

    CAS  Google Scholar 

  73. Park J, Berthiaume F, Toner M et al. Microfabricated grooved substrates as platforms for bioartificial liver reactors. Biotechnol Bioeng 2005; 90:632–644.

    PubMed  CAS  Google Scholar 

  74. Sivaraman A, Leach JK, Townsend S et al. A microscale in vitro physiological model of the liver: predictive screens for drug metabolism and enzyme induction. Curr Drug Metab 2005; 6:569–591.

    PubMed  CAS  Google Scholar 

  75. Kane BJ, Zinner MJ, Yarmush ML et al. Liver-specific functional studies in a microfluidic array of primary mammalian hepatocytes. Anal Chem 2006; 78:4291–4298.

    PubMed  CAS  Google Scholar 

  76. Leclerc E, David B, Griscom L et al. Study of osteoblastic cells in a microfluidic environment. Biomaterials 2006; 27:586–595.

    PubMed  CAS  Google Scholar 

  77. Petersen EF, Spencer RG, McFarland EW. Microengineering neocartilage scaffolds. Biotechnol Bioeng 2002; 78:801–804.

    PubMed  CAS  Google Scholar 

  78. Taylor A, Rhee S, Tu C et al. Microfluidic multicomponent device for neuroscience research. Langmuir 2003; 19:1551–1556.

    PubMed  CAS  Google Scholar 

  79. Oliva AA Jr, James CD, Kingman CE et al. Patterning axonal guidance molecules using a novel strategy for microcontact printing. Neurochem Res 2003; 28:1639–1648.

    PubMed  CAS  Google Scholar 

  80. El-Ali J, Sorger PK, Jensen KF. Cells on chips. Nature 2006; 442:403–411.

    PubMed  CAS  Google Scholar 

  81. Yang ST, Zhang X, Wen Y. Microbioreactors for high-throughput cytotoxicity assays. Curr Opin Drug Discov Dev 2008; 11:111–127.

    CAS  Google Scholar 

  82. Pearce TM, Williams JC. Microtechnology: meet neurobiology. Lab Chip 2007; 7:30–40.

    PubMed  CAS  Google Scholar 

  83. Li N, Tourovskaia A, Folch A. Biology on a chip: microfabrication for studying the behavior of cultured cells. Crit Rev Biomed Eng 2003; 31:423–488.

    PubMed  Google Scholar 

  84. Khademhosseini A, Langer R, Borenstein J et al. Microscale technologies for tissue engineering and biology. Proc Natl Acad Sci USA 2006; 103:2480–2487.

    PubMed  CAS  Google Scholar 

  85. Folch A, Toner M. Microengineering of cellular interactions. Annu Rev Biomed Eng 2000; 2:227–256.

    PubMed  CAS  Google Scholar 

  86. Andersson H, van den Berg A. Microfabrication and microfluidics for tissue engineering: state of the art and future opportunities. Lab Chip 2004; 4:98–103.

    PubMed  CAS  Google Scholar 

  87. Majors RE. New developments in microplates for biological assays and automated sample preparation. LC-GC Europe 2005; 18:70–76.

    CAS  Google Scholar 

  88. Croston GE. Functional cell-based uHTS in chemical genomic drug discovery. Trends Biotechnol 2002; 20:110–115.

    PubMed  CAS  Google Scholar 

  89. Kim MS, Yeon JH, Park JK. A microfluidic platform for 3-dimensional cell culture and cell-based assays. Biomed Microdevices 2007; 9:25–34.

    PubMed  CAS  Google Scholar 

  90. Zhang X. 3-D cell-Based High-Throughput Screening for Drug Discovery and Cell Culture Process Development. Columbus, Ohio: Chemical and Biomolecular Engineering, The Ohio State University, 2008.

    Google Scholar 

  91. Müller UR, Nicolau DV. Microarray Technology and its Applications. Berlin/New York: Springer; 2005.

    Google Scholar 

  92. Unger MA, Chou HP, Thorsen T et al. Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 2000; 288:113–116.

    PubMed  CAS  Google Scholar 

  93. Eddington DT, Beebe DJ. Flow control with hydrogels. Adv Drug Deliv Rev 2004; 56:199–210.

    PubMed  CAS  Google Scholar 

  94. Beebe DJ, Moore JS, Yu Q et al. Microfluidic tectonics: a comprehensive construction platform for microfluidic systems. Proc Natl Acad Sci USA 2000; 97:13488–13493.

    PubMed  CAS  Google Scholar 

  95. McDonald JC, Whitesides GM. Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc Chem Re 2002; 35:491–499.

    CAS  Google Scholar 

  96. Jackson WC, Tran HD, O’Brien MJ et al. Rapid prototyping of active microfluidic components based on magnetically modified elastomeric materials. J Vac Sci Technol B 2001; 19:596–599.

    CAS  Google Scholar 

  97. Ahn CH, Choi JW, Beaucage G et al. Disposable smart lab on a chip for point-of-care clinical diagnostics. P IEEE 2004; 92:154–173.

    CAS  Google Scholar 

  98. Urbanski JP, Thies W, Rhodes C et al. Digital microfluidics using soft lithography. Lab Chip 2006; 6:96–104.

    PubMed  CAS  Google Scholar 

  99. Sin A, Reardon CF, Shuler ML. A self-priming microfluidic diaphragm pump capable of recirculation fabricated by combing soft lithography and traditional machining. Biotechnol Bioeng 2003; 85:359–363.

    Google Scholar 

  100. Grover WH, Skelley AM, Liu CN et al. Monolithic membrane valves and diaphragm pumps for practical large-scale integration into glass microfluidic devices. Sensor Actuator B 2003; 89:315–323.

    Google Scholar 

  101. Grover WH, Ivester RH, Jensen EC et al. Development and multiplexed control of latching pneumatic valves using microfluidic logical structures. Lab Chip 2006; 6:623–631.

    PubMed  CAS  Google Scholar 

  102. Tanaka Y, Morishima K, Shimizu T et al. Demonstration of a PDMS-based bio-microactuator using cultured cardiomyocytes to drive polymer micropillars. Lab Chip 2006; 6:230–235.

    PubMed  CAS  Google Scholar 

  103. Tanaka Y, Morishima K, Shimizu T et al. An actuated pump on-chip powered by cultured cardiomyocytes. Lab Chip 2006; 6:362–368.

    PubMed  CAS  Google Scholar 

  104. Atencia J, Beebe DJ. Magnetically-driven biomimetic micro pumping using vortices. Lab Chip 2004; 4:598–602.

    PubMed  CAS  Google Scholar 

  105. Laser DJ, Santiago JG. A review of micropumps. J Micromech Microeng 2004; 11:R35–64.

    Google Scholar 

  106. Nguyen NT, Huang XY, Toh KC. MEMS-micropumps: a review. ASME Trans-J Fluid Eng 2002; 124:384–392.

    Google Scholar 

  107. Woias P. Micropumps-past, progress and future prospects. Sensor Actuator B 2005; 105:28–38.

    Google Scholar 

  108. Ajdari A. Pumping liquids using asymmetric electrode arrays. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 2000; 61:R45–48.

    PubMed  CAS  Google Scholar 

  109. Brown AB, Smith CG, Rennie AR. Pumping of water with ac electric fields applied to asymmetric pairs of microelectrodes. Phys Rev E Stat Nonlin Soft Matter Phys 2001; 63:016305.

    PubMed  CAS  Google Scholar 

  110. Lemoff AV, Lee AP. An AC magnetodynamic micropump. Sensor Actuator B 2000; 63:178–185.

    Google Scholar 

  111. Pamme N. Magnetism and microfluidics. Lab Chip 2006; 6:24–38.

    PubMed  CAS  Google Scholar 

  112. Duffy DC, Gillis HL, Lin J et al. Microfabricated centrifugal microfluidic systems: characterization and multiple enzymatic assays. Anal Chem 1999; 71:1832–1837.

    Google Scholar 

  113. Lai S, Wang S, Luo J et al. Design of a compact disk-like microfluidic platform for enzyme-linked immunosorbent assay. Anal Chem 2004; 76:1832–1837.

    PubMed  CAS  Google Scholar 

  114. Bouaidat S, Hansen O, Bruus H et al. Surface-directed capillary system; theory, experiments and applications. Lab Chip 2005; 5:827–836.

    PubMed  CAS  Google Scholar 

  115. Juncker D, Schmid H, Drechsler U et al. Autonomous microfluidic capillary system. Anal Chem 2002; 74:6139–6144.

    PubMed  CAS  Google Scholar 

  116. Walker GM, Beebe DJ. A passive pumping method for microfluidic devices. Lab Chip 2002; 2:131–134.

    PubMed  CAS  Google Scholar 

  117. Zhao B, Moore JS, Beebe DJ. Surface-directed liquid flow inside microchannels. Science 2001; 291(5506):1023–1026.

    PubMed  CAS  Google Scholar 

  118. Goedecke N, Eijkel J, Manz A. Evaporation driven pumping for chromatography application. Lab Chip 2002; 2:219–223.

    PubMed  CAS  Google Scholar 

  119. Eijkel J, Bomer JG, van den Berg A. Osmosis and pervaporation in polyimide submicron microfluidic channel structures. Appl Phys Lett 2005; 87:114103.

    Google Scholar 

  120. Nguyen NT, Wu Z. Micromixers—a review. J Micromech Microeng 2005; 15:R1–16.

    Google Scholar 

  121. Schilling E, Kamholz AE, Weigl BH et al. The T-sensor. Seattle: University of Washington, 2001: Available at: http://faculty.washington.edu/yagerp/microfluidicstutorial/tsensor/tsensor.htm, 2008.

    Google Scholar 

  122. Hinsmann P, Frank J, Svasek P et al. Design, simulation and application of a new micromixing device for time resolved infrared spectroscopy of chemical reactions in solution. Lab Chip 2001; 1:16–21.

    PubMed  CAS  Google Scholar 

  123. Kamholz AE, Weigl BH, Finlayson BA et al. Quantitative analysis of molecular interaction in a microfluidic channel: the T-sensor. Anal Chem 1999; 71:5340–5347.

    PubMed  CAS  Google Scholar 

  124. Bessoth FG, de Mello AJ, Manz A. Microstructure for efficient continuous flow mixing. Anal Commun 1999; 36:213–215.

    CAS  Google Scholar 

  125. Koch M, Witt H, Evans A et al. Improved characterization technique for micromixers. J Micromech. Microeng 1999; 9:156–158.

    CAS  Google Scholar 

  126. Hadd AG, Raymond DE, Halliwell JW et al. Microchip device for performing enzyme assays. Anal Chem 1997; 69:3407–3412.

    PubMed  CAS  Google Scholar 

  127. Jacobson SC, McKnight TE, Ramsey JM. Microfluidic devices for electrokinematically driven parallel and serial mixing. Anal Chem 1999; 71:4455–4459.

    CAS  Google Scholar 

  128. Neils C, Tyree Z, Finlayson B et al. Combinatorial mixing of microfluidic streams. Lab Chip 2004; 4:342–350.

    PubMed  CAS  Google Scholar 

  129. Hong CC, Choi JW, Ahn CH. A novel in-plane passive microfluidic mixer with modified Tesla structures. Lab Chip 2004; 4:109–113.

    PubMed  CAS  Google Scholar 

  130. Nichols KP, Ferullo JR, Baeumner AJ. Recirculating, passive micromixer with a novel sawtooth structure. Lab Chip 2006; 6:242–246.

    PubMed  CAS  Google Scholar 

  131. Wang H, Iovenitti P, Harvey E et al. Optimizing layout of obstacles for enhanced mixing in microchannels. Smart Mater Struct 2002; 11:662–667.

    CAS  Google Scholar 

  132. Glasgow I, Aubry N. Enhancement of microfluidic mixing using time pulsing. Lab Chip 2003; 3:114–120.

    PubMed  CAS  Google Scholar 

  133. Lin CH, Tsai CH, Pan CW et al. Rapid circular microfluidic mixer utilizing unbalanced driving force. Biomed Microdevices 2007; 9:43–50.

    PubMed  Google Scholar 

  134. Moctar M, Pfeffer E. Effects of abomasal infusions of casein on N excretion and urea turnover in sheep. Z Tierphysiol Tierernahr Futtermittelkd 1981; 46:33–38.

    PubMed  CAS  Google Scholar 

  135. Oddy MH, Santiago JG, Mikkelsen JC. Electrokinetic instability micromixing. Anal Chem 2001; 73:5822–5832.

    PubMed  CAS  Google Scholar 

  136. Bau HH, Zhong J, Yi M. A minute magneto hydrodynamic (MHD) mixer. Sensor Actuator B 2001; 79:207–215.

    Google Scholar 

  137. Rife JC, Bell MI, Horwitz JS et al. Miniature valveless ultrasonic pumps and mixers. Sensor Actuator A 2000; 86:135–140.

    Google Scholar 

  138. Hung PJ, Lee PJ, Sabounchi P et al. Continuous perfusion microfluidic cell culture array for high-throughput cell-based assays. Biotechnol Bioeng 2005; 89:1–8.

    PubMed  CAS  Google Scholar 

  139. Jeon NL, Dertinger S, Chiu DT et al. Generation of solution and surface gradients using microfluidic systems. Langmuir 2000; 16:8311–8316.

    CAS  Google Scholar 

  140. Wei CW, Cheng JY, Young TH. Elucidating in vitro cell-cell interaction using a microfluidic coculture system. Biomed Microdevices 2006; 8:65–71.

    PubMed  CAS  Google Scholar 

  141. Zaari N, Rajagopalan P, Kim SK et al. Photopolymerization in microfluidic gradient generators: microscale control of substrate compliance to manipulate cell response. Adv Mater 2004; 16:2133–2137.

    CAS  Google Scholar 

  142. Dertinger S, Chiu DT, Jeon NL. Generation of gradients having complex shapes using microfluidic networks. Anal Chem 2001; 73:1240–1246.

    CAS  Google Scholar 

  143. Lin F, Saadi W, Rhee SW et al. Generation of dynamic temporal and spatial concentration gradients using microfluidic devices. Lab Chip 2004; 4:164–167.

    PubMed  CAS  Google Scholar 

  144. Irimia D, Geba DA, Toner M. Universal microfluidic gradient generator. Anal Chem 2006; 78:3472–3477.

    PubMed  CAS  Google Scholar 

  145. Abhyankar VV, Lokuta MA, Huttenlocher A et al. Characterization of a membrane-based gradient generator for use in cell-signaling studies. Lab Chip 2006; 6:389–393.

    PubMed  CAS  Google Scholar 

  146. Wu H, Huang B, Zare RN. Generation of complex, static solution gradients in microfluidic channels. J Am Chem Soc 2006; 128:4194–4195.

    PubMed  CAS  Google Scholar 

  147. Park J, Bansal T, Pinelis M et al. A microsystem for sensing and patterning oxidative microgradients during cell culture. Lab Chip 2006; 6:611–622.

    PubMed  CAS  Google Scholar 

  148. Cheng JY, Hsieh CJ, Chuang YC et al. Performing microchannel temperature cycling reactions using reciprocating reagent shuttling along a radial temperature gradient. Analyst 2005; 130:931–940.

    PubMed  CAS  Google Scholar 

  149. Mao H, Yang T, Cremer PS. A microfluidic device with a linear temperature gradient for parallel and combinatorial measurements. J Am Chem Soc 2002; 124:4432–4435.

    PubMed  CAS  Google Scholar 

  150. Baudoin R, Corlu A, Griscom L et al. Trends in the development of microfluidic cell biochips for in vitro hepatotoxicity. Toxicol In Vitro 2007; 21:535–544.

    PubMed  CAS  Google Scholar 

  151. Ye N, Qin J, Liu X et al. Characterizing doxorubicin-induced apoptosis in HepG2 cells using an integrated microfluidic device. Electrophoresis 2007; 28:1146–1153.

    PubMed  CAS  Google Scholar 

  152. Pei M, Solchaga LA, Seidel J et al. Bioreactors mediate the effectiveness of tissue engineering scaffolds. FASEB J 2002; 16:1691–1694.

    PubMed  CAS  Google Scholar 

  153. Wu MH, Urban JP, Cui Z et al. Development of PDMS microbioreactor with well-defined and homogenous culture environment for chondrocyte 3-D culture. Biomed Microdevices 2006; 8:331–340.

    PubMed  CAS  Google Scholar 

  154. Ling Y, Rubin J, Deng Y et al. A cell-laden microfluidic hydrogel. Lab Chip 2007; 7:756–762.

    PubMed  CAS  Google Scholar 

  155. Choi NW, Cabodi M, Held B et al. Microfluidic scaffolds for tissue engineering. Nat Mater 2007; 6:908–915.

    PubMed  CAS  Google Scholar 

  156. Zguris JC, Itle LJ, Koh WG et al. A novel single-step fabrication technique to create heterogeneous poly(ethylene glycol) hydrogel microstructures containing multiple phenotypes of mammalian cells. Langmuir 2005; 21:4168–4174.

    PubMed  CAS  Google Scholar 

  157. Braschler T, Johann R, Heule M et al. Gentle cell trapping and release on a microfluidic chip by in situ alginate hydrogel formation. Lab Chip 2005; 5:553–559.

    PubMed  CAS  Google Scholar 

  158. Frisk T, Rydholm S, Andersson H et al. A concept for miniaturized 3-D cell culture using an extracellular matrix gel. Electrophoresis 2005; 26:4751–4758.

    PubMed  CAS  Google Scholar 

  159. Toh YC, Zhang C, Zhang J et al. A novel 3D mammalian cell perfusion-culture system in microfluidic channels. Lab Chip 2007; 7:302–309.

    PubMed  CAS  Google Scholar 

  160. Paguirigan A, Beebe DJ. Gelatin based microfluidic devices for cell culture. Lab Chip 2006; 6:407–413.

    PubMed  CAS  Google Scholar 

  161. Lee PJ, Hung PJ, Rao VM et al. Nanoliter scale microbioreactor array for quantitative cell biology. Biotechnol Bioeng 2006; 94:5–14.

    PubMed  CAS  Google Scholar 

  162. Hung PJ, Lee PJ, Sabounchi P et al. A novel high aspect ratio microfluidic design to provide a stable and uniform microenvironment for cell growth in a high throughput mammalian cell culture array. Lab Chip 2005; 5:44–48.

    PubMed  CAS  Google Scholar 

  163. King KR, Wang S, Irimia D et al. A high-throughput microfluidic real-time gene expression living cell array. Lab Chip 2007; 7:77–85.

    PubMed  CAS  Google Scholar 

  164. Wang Z, Kim MC, Marquez M et al. High-density microfluidic arrays for cell cytotoxicity analysis. Lab Chip 2007; 7:740–745.

    PubMed  CAS  Google Scholar 

  165. Wright D, Rajalingam B, Selvarasah S et al. Generation of static and dynamic patterned cocultures using microfabricated parylene-C stencils. Lab Chip 2007; 7:1272–1279.

    PubMed  CAS  Google Scholar 

  166. Genes LI, Tolon NV, Hulvey MK et al. Addressing a vascular endothelium array with blood components using underlying microfluidic channels. Lab Chip 2007; 7:1256–1259.

    PubMed  CAS  Google Scholar 

  167. Viravaidya K, Sin A, Shuler ML. Development of a microscale cell culture analog to probe naphthalene toxicity. Biotechnol Prog 2004; 20:316–323.

    PubMed  CAS  Google Scholar 

  168. Viravaidya K, Shuler ML. Incorporation of 3T3-L1 cells to mimic bioaccumulation in a microscale cell culture analog device for toxicity studies. Biotechnol Prog 2004; 20:590–597.

    PubMed  CAS  Google Scholar 

  169. Tourovskaia A, Figueroa-Masot X, Folch A. Differentiation-on-a-chip: a microfluidic platform for long-term cell culture studies. Lab Chip 2005; 5:14–19.

    PubMed  CAS  Google Scholar 

  170. Chung BG, Flanagan LA, Rhee SW et al. Human neural stem cell growth and differentiation in a gradient-generating microfluidic device. Lab Chip 2005; 5:401–406.

    PubMed  CAS  Google Scholar 

  171. Torisawa YS, Shiku H, Yasukawa T et al. Multi-channel 3-D cell culture device integrated on a silicon chip for anticancer drug sensitivity test. Biomaterials 2005; 26:2165–2172.

    PubMed  CAS  Google Scholar 

  172. Underhill GH, Bhatia SN. High-throughput analysis of signals regulating stem cell fate and function. Curr Opin Chem Biol 2007; 11:357–366.

    PubMed  CAS  Google Scholar 

  173. Figallo E, Cannizzaro C, Gerecht S et al. Micro-bioreactor array for controlling cellular microenvironments. Lab Chip 2007; 7:710–719.

    PubMed  CAS  Google Scholar 

  174. Saadi W, Wang SJ, Lin F et al. A parallel-gradient microfluidic chamber for quantitative analysis of breast cancer cell chemotaxis. Biomed Microdevices 2006; 8:109–118.

    PubMed  Google Scholar 

  175. Irimia D, Liu SY, Tharp WG et al. Microfluidic system for measuring neutrophil migratory responses to fast switches of chemical gradients. Lab Chip 2006; 6:191–198.

    PubMed  CAS  Google Scholar 

  176. Cheng SY, Heilman S, Wasserman M et al. A hydrogel-based microfluidic device for the studies of directed cell migration. Lab Chip 2007; 7:763–769.

    PubMed  CAS  Google Scholar 

  177. Akay G, Erhan E, Keskinler B. Bioprocess intensification in flow-through monolithic microbioreactors with immobilized bacteria. Biotechnol Bioeng 2005; 90:180–190.

    PubMed  CAS  Google Scholar 

  178. Boccazzi P, Zhang Z, Kurosawa K et al. Differential gene expression profiles and real-time measurements of growth parameters in Saccharomyces cerevisiae grown in microliter-scale bioreactors equipped with internal stirring. Biotechnol Prog 2006; 22:710–717.

    PubMed  CAS  Google Scholar 

  179. Harms P, Kostov Y, French JA et al. Design and performance of a 24-station high throughput microbioreactor. Biotechnol Bioeng 2005; 93:6–13.

    Google Scholar 

  180. Kostov Y, Harms P, Randers-Eichhorn L et al. Low-cost microbioreactor for high-throughput bioprocessing. Biotechnol Bioeng 2001; 72:346–352.

    PubMed  CAS  Google Scholar 

  181. Lamping SR, Zhang H, Allen B et al. Design of a prototype miniature bioreactor for high throughput automated bioprocessing. Chem Eng Sci 2003; 58:747–758.

    CAS  Google Scholar 

  182. Lee HL, Boccazzi P, Ram RJ et al. Microbioreactor arrays with integrated mixers and fluid injectors for high-throughput experimentation with pH and dissolved oxygen control. Lab Chip 2006; 6:1229–1235.

    PubMed  CAS  Google Scholar 

  183. Maharbiz MM, Holtz WJ, Howe RT et al. Microbioreactor arrays with parametric control for high-throughput experimentation. Biotechnol Bioeng 2004; 86:485–490.

    PubMed  Google Scholar 

  184. Schulz CM, Ruzicka J. Real-time determination of glucose consumption by live cells using a lab-on-valve system with an integrated microbioreactor. Analyst 2002; 127:1293–1298.

    PubMed  CAS  Google Scholar 

  185. Schulz CM, Scampavia L, Ruzicka J. Real-time monitoring of lactate extrusion and glucose consumption of cultured cells using a lab-on-valve system. Analyst 2002; 127:1583–1588.

    PubMed  CAS  Google Scholar 

  186. Szita N, Boccazzi P, Zhang Z et al. Development of a multiplexed microbioreactor system for high-throughput bioprocessing. Lab Chip 2005; 5:819–826.

    PubMed  CAS  Google Scholar 

  187. Zanzotto A, Szita N, Boccazzi P et al. Membrane-aerated microbioreactor for high-throughput bioprocessing. Biotechnol Bioeng 2004; 87:243–254.

    PubMed  CAS  Google Scholar 

  188. Zhang Z, Boccazzi P, Choi HG et al. Microchemostat-microbial continuous culture in a polymer-based, instrumented microbioreactor. Lab Chip 2006; 6:906–913.

    PubMed  CAS  Google Scholar 

  189. Zhang Z, Perozziello G, Boccazzi P et al. Microbioreactors for bioprocess development. JALA 2007; 12:143–151.

    Google Scholar 

  190. Zhang Z, Szita N, Boccazzi P et al. A well-mixed, polymer-based microbioreactor with integrated optical measurements. Biotechnol Bioeng 2006; 93:286–296.

    PubMed  CAS  Google Scholar 

  191. Wodnicka M, Guarino RD, Hemperly JJ et al. Novel fluorescent technology platform for high throughput cytotoxicity and proliferation assays. J Biomol Screen 2000; 5:141–152.

    PubMed  CAS  Google Scholar 

  192. O’Brien J, Wilson I, Orton T et al. Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur J Biochem 2000; 267:5421–5426.

    PubMed  Google Scholar 

  193. Ezashi T, Das P, Roberts RM. Low O2 tensions and the prevention of differentiation of hES cells. Proc Natl Acad Sci USA 2005; 102:4783–4788.

    PubMed  CAS  Google Scholar 

  194. Malda J, Martens DE, Tramper J et al. Cartilage tissue engineering: controversy in the effect of oxygen. Crit Rev Biotechnol 2003; 23:175–194.

    PubMed  CAS  Google Scholar 

  195. Vaupel P. The role of hypoxia-induced factors in tumor progression. Oncologist 2004; 9(Suppl 5):10–17.

    PubMed  CAS  Google Scholar 

  196. Marino AM, Yarde M, Patel H et al. Validation of the 96 well Caco2 cell culture model for high throughput permeability assessment of discovery compounds. Int J Pharm 2005; 297:235–241.

    PubMed  CAS  Google Scholar 

  197. Li AP, Lu C, Brent JA et al. Cryopreserved human hepatocytes: characterization of drug-metabolizing enzyme activities and applications in higher throughput screening assays for hepatotoxicity, metabolic stability and drug-drug interaction potential. Chem Biol Interact 1999; 121:17–35.

    PubMed  CAS  Google Scholar 

  198. Bang H, Lim SH, Lee YK et al. Serial dilution microchip for cytotoxicity test. J Micromech Microeng 2004; 14:1165–1170.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shang-Tian Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Wen, Y., Zhang, X., Yang, ST. (2012). Medium to High Throughput Screening: Microfabrication and Chip-Based Technology. In: Balls, M., Combes, R.D., Bhogal, N. (eds) New Technologies for Toxicity Testing. Advances in Experimental Medicine and Biology, vol 745. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3055-1_11

Download citation

Publish with us

Policies and ethics