Skip to main content

Epigenetic Targeting and Histone Deacetylase Inhibition in RCC

  • Chapter
  • First Online:
Renal Cell Carcinoma

Abstract

Epigenetic regulation through histone modifications and DNA methylation of critical genes involved in cell cycle regulation, invasion, metastasis, and tumor-induced angiogenesis has been shown to play an important role in cancer development. Epigenetic changes are potentially reversible and therefore represent a target for therapeutic intervention with the potential of modulating oncogenes/tumor suppressor genes involved in the initiation and progression of cancer. Rational combination strategies that take advantage of transcriptional and posttranslational modifications induced by histone deacetylase inhibitors have generated promising preclinical results and are actively being tested in clinical trials. Preclinical and clinical evidence suggests that kidney tumors are ideal candidates for epigenetic therapies in view of specific mutations in histone modifier genes, overexpression of angiogenesis factors, and intrinsic sensitivity to immunotherapies. This chapter focuses on epigenetic changes in renal cell carcinoma (RCC) and, in particular, on histone modifications and therapeutic approaches currently underway targeting these epigenetic changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Esteller M, Herman JG (2002) Cancer as an epigenetic disease: DNA methylation and chromatin alterations in human tumours. J Pathol 196:1–7

    Article  PubMed  CAS  Google Scholar 

  2. Laird PW (2005) Cancer epigenetics. Hum Mol Genet 14:R65–R76

    Article  PubMed  CAS  Google Scholar 

  3. Fog CK, Jensen KT, Lund AH (2007) Chromatin-modifying proteins in cancer. Acta Pathol Microbiol Immunol Scand 115:1060–1089

    CAS  Google Scholar 

  4. Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33:245–254

    Article  PubMed  CAS  Google Scholar 

  5. Li E (2002) Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet 3:662–673

    Article  PubMed  CAS  Google Scholar 

  6. Goldberg AD, Allis CD, Bernstein E (2007) Epigenetics: a landscape takes shape. Cell 128:635–638

    Article  PubMed  CAS  Google Scholar 

  7. Muntean AG, Hess JL (2009) Epigenetic dysregulation in cancer. Am J Pathol 175:1353–1361

    Article  PubMed  CAS  Google Scholar 

  8. Feinberg AP (2007) Phenotypic plasticity and the epigenetics of human disease. Nature 447:433–440

    Article  PubMed  CAS  Google Scholar 

  9. Jones PA, Takai D (2001) The role of DNA methylation in mammalian epigenetics. Science 293:1068–1070

    Article  PubMed  CAS  Google Scholar 

  10. Yoo C, Jones P (2006) Epigenetic therapy of cancer: past, present and future. Nat Rev Drug Discov 5:37–50

    Article  PubMed  CAS  Google Scholar 

  11. Wang GG, Allis CD, Chi P (2007) Chromatin remodeling and cancer, part I: covalent histone modifications. Trends Mol Med 13:363–372

    Article  PubMed  CAS  Google Scholar 

  12. Marks PA, Miller T, Richon VM (2003) Histone deacetylases. Curr Opin Pharmacol 3:344–351

    Article  PubMed  CAS  Google Scholar 

  13. Prohaska SJ, Stadler PF, Krakauer DC (2010) Innovation in gene regulation: the case of chromatin computation. J Theor Biol 265:27–44

    Article  PubMed  CAS  Google Scholar 

  14. Egger G, Liang G, Aparicio A, Jones PA (2004) Epigenetics in human disease and prospects for epigenetic therapy. Nature 429:457–463

    Article  PubMed  CAS  Google Scholar 

  15. Richards EJ, Elgin SCR (2002) Epigenetic codes for heterochromatin formation and silencing: rounding up the usual suspects. Cell 108:489–500

    Article  PubMed  CAS  Google Scholar 

  16. Marks PA, Rifkind RA, Richon VM, Breslow R, Miller T, Kelly WK (2001) Histone deacetylases and cancer: causes and therapies. Nat Rev Cancer 1:194–202

    Article  PubMed  CAS  Google Scholar 

  17. Bertos NR, Wang AH, Yang XJ (2001) Class II histone deacetylases: structure, function, and regulation. Biochem Cell Biol 79:243–252

    Article  PubMed  CAS  Google Scholar 

  18. Esteller M (2008) Epigenetics in cancer. N Engl J Med 358:1148–1159

    Article  PubMed  CAS  Google Scholar 

  19. Chi P, Allis CD, Wang GG (2010) Covalent histone modifications—miswritten, misinterpreted and mis-erased in human cancers. Nat Rev Cancer 10:457–469

    Article  PubMed  CAS  Google Scholar 

  20. Glozak MA, Seto E (2007) Histone deacetylases and cancer. Oncogene 26:5420–5432

    Article  PubMed  CAS  Google Scholar 

  21. Verdin E, Dequiedt F, Kasler HG (2003) Class II histone deacetylases: versatile regulators. Trends Genet 19:286–293

    Article  PubMed  CAS  Google Scholar 

  22. Thiagalingam SAM, Cheng K-H, Lee HJ, Mineva N, Thiagalingam A, Ponte JF (2003) Histone deacetylases: unique players in shaping the epigenetic histone code. Ann N Y Acad Sci 983:84–100

    Article  PubMed  CAS  Google Scholar 

  23. de Ruijter AJM, van Gennip AH, Caron HN, Kemp S, van Kuilenburg ABP (2003) Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 370:737–749

    Article  PubMed  Google Scholar 

  24. Marks PA, Richon VM, Breslow R, Rifkind RA (2001) Histone deacetylase inhibitors as new cancer drugs. Curr Opin Oncol 13:477–483

    Article  PubMed  CAS  Google Scholar 

  25. Baldewijns MML, van Vlodrop IJH, Schouten LJ, Soetekouw PMMB, de Bruïne AP, van Engeland M (2008) Genetics and epigenetics of renal cell cancer. Biochim Biophys Acta 1785:133–155

    PubMed  CAS  Google Scholar 

  26. Dulaimi E, de Caceres II, Uzzo RG et al (2004) Promoter hypermethylation profile of kidney cancer. Clin Cancer Res 10:3972–3979

    Article  PubMed  CAS  Google Scholar 

  27. Khoo SK, Kahnoski K, Sugimura J et al (2003) Inactivation of BHD in sporadic renal tumors. Cancer Res 63:4583–4587

    PubMed  CAS  Google Scholar 

  28. Majid S, Dar AA, Ahmad AE et al (2009) BTG3 tumor suppressor gene promoter demethylation, histone modification and cell cycle arrest by genistein in renal cancer. Carcinogenesis 30:662–670

    Article  PubMed  CAS  Google Scholar 

  29. Nojima D, Nakajima K, Li L-C et al (2001) CpG methylation of promoter region inactivates E-cadherin gene in renal cell carcinoma. Mol Carcinog 32:19–27

    Article  PubMed  CAS  Google Scholar 

  30. Christoph F, Weikert S, Kempkensteffen C et al (2006) Promoter hypermethylation profile of kidney cancer with new proapoptotic p53 target genes and clinical implications. Clin Cancer Res 12:5040–5046

    Article  PubMed  CAS  Google Scholar 

  31. Morrissey C, Martinez A, Zatyka M et al (2001) Epigenetic inactivation of the RASSF1A 3p21.3 tumor suppressor gene in both clear cell and papillary renal cell carcinoma. Cancer Res 61:7277–7281

    PubMed  CAS  Google Scholar 

  32. Peters I, Rehmet K, Wilke N et al (2007) RASSF1A promoter methylation and expression analysis in normal and neoplastic kidney indicates a role in early tumorigenesis. Mol Cancer 6:49

    Article  PubMed  Google Scholar 

  33. Yoon J-H, Dammann R, Pfeifer GP (2001) Hypermethylation of the CpG island of the RASSF1A gene in ovarian and renal cell carcinomas. Int J Cancer 94:212–217

    Article  PubMed  CAS  Google Scholar 

  34. Bachman KE, Herman JG, Corn PG et al (1999) Methylation-associated silencing of the tissue inhibitor of metalloproteinase-3 gene suggests a suppressor role in kidney, brain, and other human cancers. Cancer Res 59:798–802

    PubMed  CAS  Google Scholar 

  35. Okuda H, Toyota M, Ishida W et al (2005) Epigenetic inactivation of the candidate tumor suppressor gene HOXB13 in human renal cell carcinoma. Oncogene 25:1733–1742

    Article  Google Scholar 

  36. Kawamoto K, Hirata H, Kikuno N, Tanaka Y, Nakagawa M, Dahiya R (2008) DNA methylation and histone modifications cause silencing of Wnt antagonist gene in human renal cell carcinoma cell lines. Int J Cancer 123:535–542

    Article  PubMed  CAS  Google Scholar 

  37. To KKW, Zhan Z, Bates SE (2006) Aberrant promoter methylation of the ABCG2 gene in renal carcinoma. Mol Cell Biol 26:8572–8585

    Article  PubMed  CAS  Google Scholar 

  38. Cohen HT, McGovern FJ (2005) Renal-cell carcinoma. N Engl J Med 353:2477–2490

    Article  PubMed  CAS  Google Scholar 

  39. Kim MS, Kwon HJ, Lee YM et al (2001) Histone deacetylases induce angiogenesis by negative regulation of tumor suppressor genes. Nat Med 7:437–443

    Article  PubMed  Google Scholar 

  40. Kimberely FC, Screaton GR (2004) Following a TRAIL: update on a ligand and its five receptors. Cell Res 14:359–372

    Article  Google Scholar 

  41. VanOosten R, Moore J, Karacay B, Griffith T (2005) Histone deacetylase inhibitors modulate renal cell carcinoma sensitivity to TRAIL/Apo-2 L-induced apoptosis by enhancing TRAIL-R2 expression. Cancer Biol Ther 4:1104–1112

    Article  PubMed  CAS  Google Scholar 

  42. Fritzsche F, Weichert W, Roske A et al (2008) Class I histone deacetylases 1, 2 and 3 are highly expressed in renal cell cancer. BMC Cancer 8:381

    Article  PubMed  Google Scholar 

  43. Dalgliesh GL, Furge K, Greenman C, Chen L, Bignell G, Butler A et al (2010) Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature 463(7279):360–363, Epub 2010 Jan 6

    Article  PubMed  CAS  Google Scholar 

  44. Varela I, Tarpey P, Raine K, Huang D, Ong CK, Stephens P et al (2011) Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature 469(7331):539–542

    Article  PubMed  CAS  Google Scholar 

  45. Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3:415–428

    Article  PubMed  CAS  Google Scholar 

  46. Sharma S, Kelly TK, Jones PA (2010) Epigenetics in cancer. Carcinogenesis 31:27–36

    Article  PubMed  CAS  Google Scholar 

  47. Hellebrekers DMEI, Griffioen AW, van Engeland M (2007) Dual targeting of epigenetic therapy in cancer. Biochim Biophys Acta 1775:76–91

    PubMed  CAS  Google Scholar 

  48. Grønbaek K, Hother C, Jones PA (2007) Epigenetic changes in cancer. Acta Pathol Microbiol Immunol Scand 115:1039–1059

    Google Scholar 

  49. Einav Nili G-Y, Saito Y, Egger G, Jones PA (2008) Cancer epigenetics: modifications, screening, and therapy. Annu Rev Med 59:267–280

    Article  Google Scholar 

  50. Semenza GL (2010) Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene 29(5):625–634

    Article  PubMed  CAS  Google Scholar 

  51. Ellis L, Hammers H, Pili R (2009) Targeting tumor angiogenesis with histone deacetylase inhibitors. Cancer Lett 280(2):145

    Article  PubMed  CAS  Google Scholar 

  52. Qian DZ, Kachhap SK, Collis SJ et al (2006) Class II histone deacetylases are associated with VHL-independent regulation of hypoxia-inducible factor 1α. Cancer Res 66:8814–8821

    Article  PubMed  CAS  Google Scholar 

  53. Qian DZ et al (2006) Targeting tumor angiogenesis with histone deacetylase inhibitors: the hydroxamic acid derivative LBH589. Clin Cancer Res 12(2):634–642

    Article  PubMed  CAS  Google Scholar 

  54. Qian DZ et al (2004) The histone deacetylase inhibitor NVP-LAQ824 inhibits angiogenesis and has a greater antitumor effect in combination with the vascular endothelial growth factor receptor tyrosine kinase inhibitor PTK787/ZK222584. Cancer Res 64(18):6626–6634

    Article  PubMed  CAS  Google Scholar 

  55. Verheul HMW, Salumbides B, Van Erp K et al (2008) Combination strategy targeting the hypoxia inducible factor-1α with mammalian target of rapamycin and histone deacetylase inhibitors. Clin Cancer Res 14:3589–3597

    Article  PubMed  CAS  Google Scholar 

  56. Altucci L, Gronemeyer H (2001) The promise of retinoids to fight against cancer. Nat Rev Cancer 1:181–193

    Article  PubMed  CAS  Google Scholar 

  57. Touma SE, Goldberg JS, Moench P et al (2005) Retinoic acid and the histone deacetylase inhibitor trichostatin a inhibit the proliferation of human renal cell carcinoma in a xenograft tumor model. Clin Cancer Res 11:3558–3566

    Article  PubMed  CAS  Google Scholar 

  58. Wang X-F, Qian DZ, Ren M (2005) Epigenetic modulation of retinoic acid receptor β2 by the histone deacetylase inhibitor MS-275 in human renal cell carcinoma. Clin Cancer Res 11:3535–3542

    Article  PubMed  CAS  Google Scholar 

  59. Kaech SM, Wherry EJ, Ahmed R (2002) Effector and memory T-cell differentiation: implications for vaccine development. Nat Rev Immunol 2:251–262

    Article  PubMed  CAS  Google Scholar 

  60. Rolland JM, Gardner LM, O’Hehir RE (2010) Functional regulatory T cells and allergen immunotherapy. Curr Opin Allergy Clin Immunol 10:559–566. doi:10.1097/ACI.0b013e32833ff2b2

    Article  PubMed  CAS  Google Scholar 

  61. Kato Y, Yoshimura K, Shin T et al (2007) Synergistic in vivo antitumor effect of the histone deacetylase inhibitor MS-275 in combination with interleukin 2 in a murine model of renal cell carcinoma. Clin Cancer Res 13:4538–4546

    Article  PubMed  CAS  Google Scholar 

  62. Jones J, Juengel E, Mickuckyte A et al (2009) Valproic acid blocks adhesion of renal cell carcinoma cells to endothelium and extracellular matrix. J Cell Mol Med 13:2342–2352

    Article  PubMed  Google Scholar 

  63. Cha T-L, Chuang M-J, Wu S-T et al (2009) Dual degradation of aurora A and B kinases by the histone deacetylase inhibitor LBH589 induces G2-M arrest and apoptosis of renal cancer cells. Clin Cancer Res 15:840–850

    Article  PubMed  CAS  Google Scholar 

  64. Hainsworth JD, Infante JR, Spigel DR, Arrowsmith ER, Boccia RV, Burris HA (2011) A phase II trial of panobinostat, a histone deacetylase inhibitor, in the treatment of patients with refractory metastatic renal cell carcinoma. Cancer Invest 29(7):451–455

    PubMed  CAS  Google Scholar 

  65. Nanus DM, Tagawa ST, Dutcher JP, Akhtar NH, Saran A, Mazumdar M, Milowsky MI, Gudas LJ (2011) A phase I trial of suberoylanilide hydroxamic acid (SAHA) and 13-cis retinoic acid in the treatment of patients with advanced renal cell carcinoma (RCC). J Clin Oncol 29(suppl 7): abstract 349

    Google Scholar 

  66. Pili R, Lodge M, Verheul H, Mashtare T, Wahl RL, Martin JE, Espinoza-Delgado I, Liu G, Carducci MA (2010) Combination of the histone deacetylase inhibitor vorinostat with bevacizumab in pretreated patients with renal cell carcinoma: safety, efficacy, and pharmacodynamic results. In: ASCO GU meeting 2010 genitourinary cancers symposium, San Francisco, USA, 5–7 March 2010

    Google Scholar 

  67. Tavares TS, Nanus DM, Yang X, Gudas LJ (2008) Gene microarray analysis of human renal cell carcinoma: the effects of HDAC inhibition and retinoid treatment. Cancer Biol Ther 7:1607–1618

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Pili M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ramakrishnan, S., Pili, R. (2012). Epigenetic Targeting and Histone Deacetylase Inhibition in RCC. In: Figlin, R., Rathmell, W., Rini, B. (eds) Renal Cell Carcinoma. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-2400-0_9

Download citation

Publish with us

Policies and ethics