Skip to main content

Therapeutic Cloning and Cellular Reprogramming

  • Chapter
Stem Cell Transplantation

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 741))

Abstract

Embryonic stem cells are capable of differentiating into any cell-type present in an adult organism, and constitute a renewable source of tissue for regenerative therapies. The transplant of allogenic stem cells is challenging due to the risk of immune rejection. Nevertheless, somatic cell reprogramming techniques allow the generation of isogenic embryonic stem cells, genetically identical to the patient. In this chapter we will discuss the cellular reprogramming techniques in the context of regenerative therapy and the biological and technical barriers that they will need to overcome before clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Briggs R, King TJ. Nuclear transplantation studies on the early gastrula (Rana pipiens). I. Nuclei of presumptive endoderm. Dev Biol 1960; 2:252–270.

    Article  PubMed  CAS  Google Scholar 

  2. Gurdon JB. Adult frogs derived from the nuclei of single somatic cells. Dev Biol 1962; 4:256–273.

    Article  PubMed  CAS  Google Scholar 

  3. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature 1981; 292(5819):154–156.

    Article  PubMed  CAS  Google Scholar 

  4. Thomson JA, Itskovitz-Eldor J, Shapiro SS et al. Embryonic stem cell lines derived from human blastocysts. Science 1998; 282(5391):1145–1147.

    Article  PubMed  CAS  Google Scholar 

  5. Nakajima FK, Tokunaga, Nakatsuji N. Human leukocyte antigen matching estimations in a hypothetical bank of human embryonic stem cell lines in the Japanese population for use in cell transplantation therapy. Stem Cells 2007; 25(4):983–985.

    Article  PubMed  CAS  Google Scholar 

  6. Taylor CJ, Bolton EM, Pocock S et al. Banking on human embryonic stem cells: estimating the number of donor cell lines needed for HLA matching. Lancet 2005; 366(9502):2019–2025.

    Article  PubMed  Google Scholar 

  7. Drukker M, Katz G, Urbach A et al. Characterization of the expression of MHC proteins in human embryonic stem cells. Proc Natl Acad Sci USA 2002; 99(15):9864–9869.

    Article  PubMed  CAS  Google Scholar 

  8. Mammolenti M, Gajavelli S, Tsoulfas P et al. Absence of major histocompatibility complex class I on neural stem cells does not permit natural killer cell killing and prevents recognition by alloreactive cytotoxic T-lymphocytes in vitro. Stem Cells 2004; 22(6):1101–1110.

    Article  PubMed  CAS  Google Scholar 

  9. Kofidis T, deBruin JL, Tanaka M et al. They are not stealthy in the heart: embryonic stem cells trigger cell infiltration, humoral and T-lymphocyte-based host immune response. Eur J Cardiothorac Surg 2005; 28(3):461–466.

    Article  PubMed  Google Scholar 

  10. Swijnenburg RJ, Tanaka M, Vogel H et al. Embryonic stem cell immunogenicity increases upon differentiation after transplantation into ischemic myocardium. Circulation 2005; 112(Suppl 9):I166–I172.

    Google Scholar 

  11. Tabar V, Tomishima M, Panagiotakos G et al. Therapeutic cloning in individual parkinsonian mice. Nat Med 2008; 14(4):379–381.

    Article  PubMed  CAS  Google Scholar 

  12. Goodell MA. Stem-cell “plasticity”: befuddled by the muddle. Curr Opin Hematol 2003; 10(3):208–213.

    Article  PubMed  Google Scholar 

  13. Raff M. Adult stem cell plasticity: fact or artifact? Annu Rev Cell Dev Biol 2003; 19:1–22.

    Article  PubMed  CAS  Google Scholar 

  14. Wagers AJ, Weissman IL. Plasticity of adult stem cells. Cell 2004; 116(5):639–648.

    Article  PubMed  CAS  Google Scholar 

  15. Surani MA, Barton SC, Norris ML. Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature 1984; 308(5959):548–550.

    Article  PubMed  CAS  Google Scholar 

  16. Allen ND, Barton SC, Hilton K et al. A functional analysis of imprinting in parthenogenetic embryonic stem cells. Development 1994; 120(6):1473–1482.

    PubMed  CAS  Google Scholar 

  17. Gurdon JB. Nuclear transplantation in eggs and oocytes. J Cell Sci Suppl 1986; 4:287–318.

    PubMed  CAS  Google Scholar 

  18. Stojkovic M, Stojkovic P, Leary C et al. Derivation of a human blastocyst after heterologous nuclear transfer to donated oocytes. Reprod Biomed Online 2005; 11(2):226–231.

    Article  PubMed  Google Scholar 

  19. French AJ, Adams CA, Anderson LS et al. Development of human cloned blastocysts following somatic cell nuclear transfer with adult fibroblasts. Stem Cells 2008; 26(2):485–493.

    Article  PubMed  CAS  Google Scholar 

  20. Morgan HD, Santos F, Green K et al. Epigenetic reprogramming in mammals. Hum Mol Genet 2005; 14 Spec No 1:R47–R58.

    Article  PubMed  CAS  Google Scholar 

  21. Wakayama S, Cummins JM, Wakayama T. Nuclear reprogramming to produce cloned mice and embryonic stem cells from somatic cells. Reprod Biomed Online 2008; 16(4):545–552.

    Article  PubMed  Google Scholar 

  22. Wakayama S, Jakt ML, Suzuki M et al. Equivalency of nuclear transfer-derived embryonic stem cells to those derived from fertilized mouse blastocysts. Stem Cells 2006; 24(9):2023–2033.

    Article  PubMed  CAS  Google Scholar 

  23. Takagi N, Yoshida MA, Sugawara O et al. Reversal of X-inactivation in female mouse somatic cells hybridized with murine teratocarcinoma stem cells in vitro. Cell 1983; 34(3):1053–1062.

    Article  PubMed  CAS  Google Scholar 

  24. Tada M, Takahama Y, Abe K et al. Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Curr Biol 2001; 11(19):1553–1558.

    Article  PubMed  CAS  Google Scholar 

  25. Tada M, Tada T, Lefebvre et al. Embryonic germ cells induce epigenetic reprogramming of somatic nucleus in hybrid cells. EMBO J 1997; 16(21):6510–6520.

    Article  PubMed  CAS  Google Scholar 

  26. Boyer LA, Plath K, Zeitlinger J et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 2006; 441(7091):349–353.

    Article  PubMed  CAS  Google Scholar 

  27. Dejosez M, Krumenacker JS, Zitur LJ et al. Ronin is essential for embryogenesis and the pluripotency of mouse embryonic stem cells. Cell 2008; 133(7):1162–1174.

    Article  PubMed  CAS  Google Scholar 

  28. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126(4):663–676.

    Article  PubMed  CAS  Google Scholar 

  29. Maherali N, Sridharan R, Xie W et al. Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 2007; 1(1):55–70.

    Article  PubMed  CAS  Google Scholar 

  30. Yu J, Vodyanik MA, Smuga-Otto K et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007; 318(5858):1917–1920.

    Article  PubMed  CAS  Google Scholar 

  31. Meissner A, Wernig M, Jaenisch R. Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nat Biotechnol 2007; 25(10):1177–1181.

    Article  PubMed  CAS  Google Scholar 

  32. Okita K, Hong H, Takahashi K et al. Generation of mouse-induced pluripotent stem cells with plasmid vectors. Nat Protoc 2008; 5(3):418–428.

    Article  Google Scholar 

  33. Soldner F, Hockemeyer D, Beard C et al. Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 2009; 136(5):964–977.

    Article  PubMed  CAS  Google Scholar 

  34. Woltjen K, Michael IP, Mohseni P et al. Piggybac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 2009; 458(7239):766–770.

    Article  PubMed  CAS  Google Scholar 

  35. Zhou H, Wu S, Joo JY et al. Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 2009; 4(5):381–384.

    Article  PubMed  CAS  Google Scholar 

  36. Shi Y, Do JT, Desponts C et al. A combined chemical and genetic approach for the generation of induced pluripotent stem cells. Cell Stem Cell 2008; 2(6):525–528.

    Article  PubMed  CAS  Google Scholar 

  37. Ichida JK, Blanchard J, Lam K et al. A small-molecule inhibitor of tgf-beta signaling replaces Sox2 in reprogramming by inducing nanog. Cell Stem Cell 5(5):491–503.

    Google Scholar 

  38. Li Y, Zhang Q, Yin X et al. Generation of iPSCs from mouse fibroblast with a single gene, Oct4, and small molecules. Cell Res 2010.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose B. Cibelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Rodriguez, R.M., Ross, P.J., Cibelli, J.B. (2012). Therapeutic Cloning and Cellular Reprogramming. In: López-Larrea, C., López-Vázquez, A., Suárez-Álvarez, B. (eds) Stem Cell Transplantation. Advances in Experimental Medicine and Biology, vol 741. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-2098-9_18

Download citation

Publish with us

Policies and ethics