Skip to main content

Anaerobic Digestion as an Effective Biofuel Production Technology

  • Chapter
  • First Online:

Abstract

The methane produced from the anaerobic digestion of organic wastes and energy crops represents an elegant and economical mean of generating renewable biofuel. Anaerobic digestion is a mature technology and is already used for the conversion of the organic fraction of municipal solid wastes and primary and secondary sludge from wastewater treatment plant. High methane yield up to 0.45 Nm3 CH4/kg volatile solids (VS) or 12,390 Nm3 CH4/ha can be achieved with sugar and starch crops, although these cultures are competing for high quality land with food and feed crops. The cultivation of lignocellulosic crops on marginal and set-aside lands is a more environmentally sound and sustainable option for renewable energy production. The methane yield obtained from these crops is lower, 0.17–0.39 Nm3 CH4/kg VS or 5,400 Nm3 CH4/ha, as its conversion into methane is facing the same initial barrier as for the production of ethanol, e.g., hydrolysis of the crops. Intensive research and development on efficient pretreatments is ongoing to optimize the net energy production, which is potentially greater than for liquid biofuels, since the whole substrate excepted lignin is convertible into methane. Algal biomass is another alternative to food and feed crops. Their relatively high methane potential (up to 0.45 Nm3 CH4/kg VS fed) combined with their higher areal biomass productivity make them particularly attractive as a feedstock for an anaerobic digestion-based biorefinery concept.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alves MM, Mota Vieira JA, Álvares Pereira RM et al (2001) Effects of lipids and oleic acid on biomass development in anaerobic fixed bed reactors. Part II: Oleic acid toxicity and biodegradability. Water Res 35(1):264–270

    Article  PubMed  CAS  Google Scholar 

  • Amon T, Amon B, Kryvoruchko V et al (2007) Methane production through anaerobic digestion of various energy crops grown in sustainable crop rotations. Bioresour Technol 98(17):3204–3212

    Article  PubMed  CAS  Google Scholar 

  • Angelidaki I, Sanders W (2004) Assessment of the anaerobic biodegradability of macropollutants. Rev Environ Sci Bio/Tech 3(2):117–130

    Article  CAS  Google Scholar 

  • Asinari Di San Marzano C-M, Legros A, Naveau H et al (1981) Biomethanation of the marine algae Tetraselmis. Int J Sustain Energy 1(4):263–272

    Google Scholar 

  • Badger DM, Bogue MJ, Stewart DJ (1979) Biogas production from crops and organic wastes 1. Results of batch digestion. N Z J Sci 22:11–20

    CAS  Google Scholar 

  • Bolzonella D, Innocenti L, Pavan P et al (2003) Semi-dry thermophilic anaerobic digestion of the organic fraction of municipal solid waste: focusing on the start-up phase. Bioresour Technol 86(2):123–129

    Article  PubMed  CAS  Google Scholar 

  • Boone DR, Chynoweth DP, Mah RA et al (1993) Ecology and microbiology of biogasification. Biomass Bioenergy 5:191–202

    Article  CAS  Google Scholar 

  • Börjesson P, Mattiasson B (2008) Biogas as a resource-efficient vehicle fuel. Trends Biotechnol 26:7–13

    Article  PubMed  Google Scholar 

  • Braun R (2007) Anaerobic digestion: a multi-facetted process for energy, environmental management and rural development. In: Paolo R (ed) Improvement of crop plants for industrial uses. Springer, Dordrecht, Netherland, pp 335–416

    Chapter  Google Scholar 

  • Briand X, Morand P (1997) Anaerobic digestion of Ulva sp. 1. Relationship between Ulva composition and methanisation. J Appl Phycol 9(6):511–524

    CAS  Google Scholar 

  • Buckley M, Wall J (2006) Microbial energy conversion. American Academy of Microbiology, Washington DC

    Google Scholar 

  • Canale CJ, Glenn BP, Reeves JB (1992) Chemically treated alfalfa: lignin composition and in situ disappearance of neutral detergent fibers components. J Dairy Sci 75:1543–1554

    Article  CAS  Google Scholar 

  • Chen PH, Oswald WJ (1998) Thermochemical treatment for algal fermentation. Environ Int 24(8):889–897

    Article  CAS  Google Scholar 

  • Chynoweth DP, Owens JM, Legrand R (2001) Renewable methane from anaerobic digestion of biomass. Renew Energy 22(1–3):1–8

    Article  CAS  Google Scholar 

  • Cirne DG, Paloumet X, Björnsson L et al (2007) Anaerobic digestion of lipid-rich waste – effects of lipid concentration. Renew Energy 32(6):965–975

    Article  CAS  Google Scholar 

  • Clausen EC, Sitton OC, Gaddy JL (1979) Biological production of methane from energy crops. Biotechnol Bioeng 21:1209–1219

    Article  CAS  Google Scholar 

  • De Baere L (2000) Anaerobic digestion of solid waste: state-of-the-art. Water Sci Technol 41(3):283–290

    PubMed  Google Scholar 

  • De Baere L (2007) Dry continuous anaerobic digestion of energy crops. 11th IWA World congress on Anaerobic Digestion, Brisbane, Australia, 23–27 September 2007, pp Poster Session PT01

    Google Scholar 

  • De Schamphelaire L, Verstraete W (2009) Revival of the biological sunlight-to-biogas energy conversion system. Biotechnol Bioeng 103(2):296–304

    Article  PubMed  Google Scholar 

  • Delgenès JP, Penaud V, Moletta R (2003) Pretreatments for the enhancement of anaerobic digestion of solid wastes. In: Mata-Alvarez J (ed) Biomethanization of the organic fraction of municipal solid wastes. IWA Publishing, London, pp 201–228

    Google Scholar 

  • Elliott A, Mahmood T (2007) Pretreatment technologies for advancing anaerobic digestion of pulp and paper biotreatment residues. Water Res 41(19):4273–4286

    Article  PubMed  CAS  Google Scholar 

  • Environment Canada (1995) Estimation of the effects of various municipal waste management strategies on greenhouse gas emissions. Summary Report. Environment Canada, Environmental Protection Services. Report No.: EPS 2/AP/1 Document No.: EN 49-5/2-1E

    Google Scholar 

  • Fan LT, Gharpuray MM, Lee YH (1981) Evaluation of pretreatments for enzymatic conversion of agricultural residues. Biotechnol Bioeng Symp 11:29–45

    CAS  Google Scholar 

  • Fengel D, Wegener G (1984) Wood: chemistry, ultrastructure, reactions. De Gruyter, Berlin

    Google Scholar 

  • Fox M, Noike T (2004) Wet oxidation pretreatment for the increase in anaerobic biodegradability of newspaper waste. Bioresour Technol 91:273–281

    Article  PubMed  CAS  Google Scholar 

  • Frigon J-C, Guiot SR (2005) Anaerobic digestion as a sustainable solution for biosolids management by the Montreal Metropolitan Community. Water Sci Technol 52(1–2):561–566

    PubMed  CAS  Google Scholar 

  • Frigon J-C, Guiot SR (2010) Biomethane production from starch and lignocellulosic crops: a comparative review. Biofuels, Bioprod Bioref 4(4):447–458

    Article  CAS  Google Scholar 

  • Frigon J-C, Mehta P, Guiot SR (2008) The bioenergy potential from the anaerobic digestion of switchgrass and other energy crops. Growing the margins: Energy, Bioproducts and Byproducts from farm and food sectors, London, Canada, 2–5 April

    Google Scholar 

  • Frigon J-C, Mehta P, Guiot SR (2011) Impact of mechanical, chemical and enzymatic pretreatments on the methane yield from the anaerobic digestion of switchgrass. Biomass Bioenergy. DOI: 10.1016/j.biombioe.2011.02.013

    Google Scholar 

  • Frigon JC, Roy C, Guiot SR (2009) Co-digestion of switchgrass and dairy manure to increase the methane yield of an anaerobic digester. 1st Annual Canadian Farm & Food Biogas Conference, London, Canada, 9–13 March

    Google Scholar 

  • Fruteau de Laclos H, Desbois S, Saint-Joly C (1997) Anaerobic digestion of municipal solid waste: Valorga full-scale in Tilburg, Netherlands. Water Sci Technol 41(3):101–110

    Google Scholar 

  • Gharpuray MM, Lee Y-H, Fan LT (1983) Structural modification of lignocellulosics by pretreatments to enhance enzymatic hydrolysis. Biotechnol Bioeng 25(1):157–172

    Article  PubMed  CAS  Google Scholar 

  • Ghosh S, Henry MP, Sajjad A et al (2000) Pilot-cale gasification of MSW by high-rate and two-phase anaerobic digestion (TPAD). Water Sci Technol 41(3):101–110

    PubMed  CAS  Google Scholar 

  • Gunaseelan VN (1997) Anaerobic digestion of biomass for methane production: a review. Biomass Bioenergy 13(1/2):83–114

    Article  CAS  Google Scholar 

  • Gunnarsson C, Vaaagstraam L, Hansson P-A (2009) Logistics for forage harvest to biogas ­production – timeliness, capacities and costs in a swedish case study. Biomass Bioenergy 32(12):1263–1273

    Article  Google Scholar 

  • Hashimoto AG (1986) Pretreatment of wheat straw for fermentation to methane. Biotechnol Bioeng 28:1857–1866

    Article  PubMed  CAS  Google Scholar 

  • Heaven S, Milledge J, Zhang Y (2011) Comments on “Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable”. Biotechnol Adv 29(1):164–167

    Article  PubMed  CAS  Google Scholar 

  • Hedges JI, Baldock JA, Gélinas Y et al (2002) The biochemical and elemental compositions of marine plankton: a NMR perspective. Mar Chem 78(1):47–63

    Article  CAS  Google Scholar 

  • Hendrick ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18

    Article  Google Scholar 

  • Hinken L, Urban I, Haun E et al (2008) The valuation of malnutrition in the mono-digestion of maize silage by anaerobic batch tests. Water Sci Technol 58(7):1453–1459

    Article  PubMed  CAS  Google Scholar 

  • Jarvis A, Nordberg A, Jarlsvik T et al (1997) Improvement of a grass-clover silage-fed biogas process by the addition of cobalt. Biomass Bioenergy 12:453–460

    Article  CAS  Google Scholar 

  • Jorgensen H, Vibe-Pedersen J, Larsen J et al (2007) Liquefaction of lignocellulose at high-solids concentrations. Biotechnol Bioeng 96(5):862–870

    Article  PubMed  Google Scholar 

  • Kabouris JC, Tezel U, Pavlostathis SG et al (2008) The anaerobic biodegradability of municipal sludge and fat, oil, and grease at mesophilic condition. Water Environ Res 80(3):212–221

    Article  PubMed  CAS  Google Scholar 

  • Khanna M, Dhungana B, Clifton-Brown J (2008) Costs of producing Miscanthus and switchgrass for bioenergy in Illinois. Biomass Bioenergy 32(6):482–493

    Article  Google Scholar 

  • Klass DI, Ghosh S, Conrad JR (1976) The conversion of grass to fuel gas for captive use. Symposium on Clean Fuels from biomass, sewage, urban refuse and agricultural wastes, Orlando, FL, 27–30 January

    Google Scholar 

  • Kreuger E, Escobar F, Svensson S-E et al (2007) Biogas production from hemp – evaluation of the effect of harvest time on methane yield. 11th IWA World Congress on Anaerobic Digestion, Brisbane, Australia, 23–27 September, Poster Session PT01

    Google Scholar 

  • LBS (2002) GM well-to-wheel analysis of energy use and greenhouse gas emissions of advanced fuel/vehicle systems – a European study. L-B-Systemtechnik GmbH, Ottobrunn, Germany

    Google Scholar 

  • Lee JW, Gwak KS, Park JY et al (2007) Biological pretreatment of softwood Pinus densiflora by three white rot fungi. J Microbiol 45(6):485–491

    PubMed  CAS  Google Scholar 

  • Lehtomäki A (2006) Biogas production from energy crops and crop residues. Ph.D. Thesis.U. of Jyväskylä, Jyväskylä, Finland

    Google Scholar 

  • Lehtomäki A, Björnsson L (2006) Two-stage anaerobic digestion of energy crops: methane production, nitrogen mineralisation and heavy metal mobilisation. Environ Technol 27(2):209–218

    Article  PubMed  Google Scholar 

  • Lehtomäki A, Viinikainen TA, Rintala JA (2008) Screening boreal energy crops and crop residues for methane biofuel production. Biomass Bioenergy 32(6):541–550

    Article  Google Scholar 

  • Lindorfer H, Braun R, Kirchmayr R (2006) Self-heating of anaerobic digesters using energy crops. Water Sci Technol 53(8):159–166

    Article  PubMed  CAS  Google Scholar 

  • Lissens G, Vandevivere P, De Baere L et al (2001) Solid waste digestors: process performance and practice for municipal solid waste digestion. Water Sci Technol 44(8):91–102

    PubMed  CAS  Google Scholar 

  • Lynd LR, van Zyl WH, McBride JE et al (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16(5):577–583

    Article  PubMed  CAS  Google Scholar 

  • Lynd LR, Weymer PJ, van Zyl WH et al (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66(3):506–577

    Article  PubMed  CAS  Google Scholar 

  • Mata-Alvarez J, Macé S, Llabres P (2000) Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresour Technol 74(1):3–16

    Article  CAS  Google Scholar 

  • McCarty PL (1964) Anaerobic waste treatment fundamentals. Part III. Toxic materials and their control. Public Works 95(11):91–94

    CAS  Google Scholar 

  • McDonald P, Henderson AR, Heron SJE (1991) The biochemistry of silage, 2nd edn. Wiley, New York

    Google Scholar 

  • McGinn PJ, Dickinson KE, Bhatti S et al (2011) Integration of microalgae cultivation with industrial waste remediation for biofuel and bioenergy production: opportunities and limitations. Photosynth Res 109(1-3):231–247

    Google Scholar 

  • Meulepas RJW, Nordberg A, Mata-Alvarez J et al (2005) Methane production from wastewater, solid waste and biomass. In: Lens PNL, Westermann P, Haberbauer M et al (eds) Biofuels for fuel cells: renewable energy from biomass fermentation. IWA Publishing, London, UK, pp 121–138

    Google Scholar 

  • Murphy JD, Power NM (2009) An argument for using biomethane generated from grass as a biofuel in Ireland. Biomass Bioenergy 33(3):504–512

    Article  CAS  Google Scholar 

  • Mussgnug JH, Klassen V, Schlüter A et al (2010) Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. J Biotechnol 150(1):51–56

    Article  PubMed  CAS  Google Scholar 

  • Nielsen HB, Mladenovska Z, Westermann P et al (2004) Comparison of two-stage thermophilic (68°C/55°C) anaerobic digestion with one-stage thermophilic (55°C) digestion of cattle manure. Biotechnol Bioeng 86(3):291–300

    Article  PubMed  CAS  Google Scholar 

  • Noike T, Endo G, Chang J-E et al (1985) Characteristics of carbohydrates degradation and the rate-limiting step in anaerobic digestion. Biotechnol Bioeng 27(10):1482–1489

    Article  PubMed  CAS  Google Scholar 

  • Nordberg A, Edstrom M (2005) Co-digestion of energy crops and the source-sorted organic fraction of municipal waste. Water Sci Technol 52(1–2):217–222

    PubMed  CAS  Google Scholar 

  • Nordberg A, Jarvis A, Stenberg B et al (2007) Anaerobic digestion of alfalfa silage with recirculation of process liquid. Bioresour Technol 98(1):104–111

    Article  PubMed  CAS  Google Scholar 

  • Nyns EJ (1986) Biomethanation processes. In: Rehm H-J, Reed G, Schönborn W (eds) Biotechnology – Vol 8 microbial degradations. VCH Verlagsgesellschaft, Weinheim, FRG, pp 207–267

    Google Scholar 

  • Ortega L, Barrington S, Guiot SR (2008) Thermophilic adaptation of a mesophilic anaerobic sludge for food waste treatment. J Environ Manage 88(3):517–525

    Article  PubMed  CAS  Google Scholar 

  • Pande H (1998) Non-wood fibre and global fibre supply. Unasylva 49(193):44–50

    Google Scholar 

  • Parawira W, Murto M, Zvauya R et al (2004) Anaerobic batch digestion of solid potato waste alone and in combination with sugar beet leaves. Renew Energy 29(11):1811–1823

    Article  CAS  Google Scholar 

  • Parawira W, Read JS, Mattiasson B et al (2008) Energy production from agricultural residues: high methane yields in pilot-scale two-stage anaerobic digestion. Biomass Bioenergy 32(1):44–50

    Article  CAS  Google Scholar 

  • Parkin GF, Owen WF (1986) Fundamentals of anaerobic digestion of wastewater sludges. J Environ Eng Div ASCE 112(5):867–920

    Article  CAS  Google Scholar 

  • Pavlostathis SG, Giraldo-Gomez E (1991) Kinetics of anaerobic treatment: a critical review. CRC Crit Rev Environ Control 21(5–6):411–490

    CAS  Google Scholar 

  • Petersson A, Thomsen MH, Hauggaard-Nielsen H et al (2007) Potential bioethanol and biogas production using lignocellulosic biomass from winter rye, oilseed rape and faba bean. Biomass Bioenergy 31(11–12):812–819

    Article  CAS  Google Scholar 

  • Recyc-Québec (2003) Rapport annuel 36 pp. Available from: http://www.recyc-quebec.gouv.qc.ca/upload/Publications/zRA_200803.pdf

  • Reid ID (1998) Solid residues generation and management at Canadian pulp and paper mills in 1994 and 1995. Pulp & Paper Canada 99(4):49–52

    Google Scholar 

  • Richards BK, Cummings RJ, Jewell WJ (1991a) High rate low solids methane fermentation of sorghum, corn and cellulose. Biomass Bioenergy 1(5):249–260

    Article  CAS  Google Scholar 

  • Richards BK, Cummings RJ, Jewell WJ et al (1991b) High solids anaerobic methane fermentation of sorghum and cellulose. Biomass Bioenergy 1(1):47–53

    Article  CAS  Google Scholar 

  • Rittmann BE (2008) Opportunities for renewable energy using microorganisms. Biotechnol Bioeng 100:203–212

    Article  PubMed  CAS  Google Scholar 

  • Roels JA (1983) Energetics and kinetics in biotechnology. Elsevier Biomedical Press, Amsterdam

    Google Scholar 

  • Rutz D, Janssen R (2007) Biofuel technology handbook. WIP Renewable energies, München, Germany, p 152

    Google Scholar 

  • Salminen EA, Rintala J (2002) Anaerobic digestion of organic solid poultry slaughterhouse waste – a review. Bioresour Technol 83(1):13–26

    Article  PubMed  CAS  Google Scholar 

  • Samson R, Ho Lem C, Bailey Stamler S et al (2008) Developing energy crops for thermal applications. Optimizing fuel quality, energy security and GHG mitigation. In: Pimentel D (ed) Biofuels, solar and wind as renewable energy systems. Springer, Dordrecht, Netherlands, pp 395–423

    Chapter  Google Scholar 

  • Samson R, LeDuy A (1983a) Improved performance of anaerobic digestion of Spirulina maxima algal biomass by addition of carbon-rich wastes. Biotechnol Lett 5(10):677–682

    Article  Google Scholar 

  • Samson R, LeDuy A (1983b) Influence of mechanical and chemical pretreatments on anaerobic digestion of Spirulina maxima algal biomass. Biotechnol Lett 5(10):671–676

    Article  Google Scholar 

  • Samson R, LeDuy A (1986) Detailed study of anaerobic digestion of Spirulina maxima algal biomass. Biotechnol Bioeng 28(7):1014–1023

    Article  PubMed  CAS  Google Scholar 

  • Scherer PA, Lehmann K (2004) Application of an automatic Fuzzy logic controller to digest anaerobically fodder beet silage at a HRT of 6.5 days and with an OLR of 14 kg VS/(m3.d). Proc of the 10th World Congress – Anaerobic Digestion 2004, Montreal (Canada), 29 August–2 September 2004, pp. 72–78

    Google Scholar 

  • Seppälä M, Paavola T, Rintala J (2007) Methane yields of different grass species on the second and third harvest in boreal conditions. 11th IWA World Congress on Anaerobic Digestion, Brisbane, Australia, 23–27 September, pp. Poster Session PT01

    Google Scholar 

  • Sharma SK, Saini JS, Mishra I et al (1989) Biogasification of woody biomass: Ipomoea fistulosa plant stem. Biol Wastes 28(1):25–32

    Article  CAS  Google Scholar 

  • Sialve G, Bernet N, Bernard O (2009) Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol Adv 27(4):409–416

    Article  PubMed  CAS  Google Scholar 

  • Smyth BM, Murphy JD, O’Brien CM (2009) What is the energy balance of grass biomethane in Ireland and other temperate northern European climates? Renew Sustain Energy Rev 13(9):2349–2360

    Article  CAS  Google Scholar 

  • Speece RE (1996) Anaerobic biotechnology for industrial wastewaters. Archae Press, Nashville, TN

    Google Scholar 

  • Statistics Canada (2001) Censuses of population. Available from: http://www40.statcan.gc.ca/l01/cst01/demo62a-eng.htm

  • Statistics Canada (2002) Waste management industry: government and business sectors. Available from: http://www.statcan.ca/Daily/English/020425/d020425b.htm

  • Stewart DJ, Bogue MJ, Badger DM (1984) Biogas production from crops and organic wastes 2. Results of continuous digestion tests. N Z J Sci 27:285–294

    Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83(1):1–11

    Article  PubMed  CAS  Google Scholar 

  • Svensson LM, Christensson K, Björnsson L (2006) Biogas production from crop residues on a farm-scale level in Sweden: scale, choice of substrate and utilisation rate most important parameters for financial feasibility. Bioprocess Biosyst Eng 29(2):137–146

    Article  PubMed  CAS  Google Scholar 

  • Uduman N, Qi Y, Danquah MK et al (2010) Dewatering of microalgal cultures: a major bottleneck to algae-based fuels. J Renew Sustain Energy 2(012701):1–15

    Google Scholar 

  • Uellendahl H, Wang G, Moller HB et al (2009) Energy balance and cost-benefit analysis of biogas production from perennial energy crops pretreated by wet oxidation. Water Sci Technol 58(9):1841–1847

    Google Scholar 

  • van Haandel AC (2005) Integrated energy production and reduction of the environmental impact at alcohol distillery plants. Water Sci Technol 52(1–2):49–58

    PubMed  Google Scholar 

  • Vandevivere P, De Baere L, Verstraete W (2002) Types of anaerobic digester for solid wastes. In: Mata-Alvarez J (ed) Biometanization of the organic fraction of municipal solid wastes. IWA Publishing, London, UK, pp 111–140

    Google Scholar 

  • Vassilev SV, Baxter D, Andersen LK et al (2010) An overview of the chemical composition of biomass. Fuel 89(5):913–933

    Article  CAS  Google Scholar 

  • Weiland P (2003) Production and energetic use of biogas from energy crops and wastes in Germany. Appl Biochem Biotechnol 109(1–3):263–274

    Article  PubMed  CAS  Google Scholar 

  • Wilkie A, Goto M, Bordeaux FM et al (1986) Enhancement of anaerobic methanogenesis from napier grass by addition of micronutrients. Biomass Bioenergy 11:135–146

    CAS  Google Scholar 

  • Zamalloa C, Vulsteke E, Albrecht J et al (2011) The techno-economic potential of renewable energy through the anaerobic digestion of microalgae. Bioresour Technol 102(2):1149–1158

    Article  PubMed  CAS  Google Scholar 

  • Zauner E, Kuntzel U (1986) Methane production from ensiled plant material. Biomass Bioenergy 10(3):207–223

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serge R. Guiot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Guiot, S.R., Frigon, JC. (2012). Anaerobic Digestion as an Effective Biofuel Production Technology. In: Hallenbeck, P. (eds) Microbial Technologies in Advanced Biofuels Production. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1208-3_9

Download citation

Publish with us

Policies and ethics