Skip to main content

Abstract

A change of intracellular calcium concentration is an early event in a large array of biological processes in plants, such as cell division, polarity, growth and development at normal conditions and under adaptation to abiotic and biotic stresses. This chapter focuses on calcium signalling induced by different types of abiotic stresses, such as salt, cold, anoxia, aluminium and heavy metal stress, while a minor part deals with biotic stress signalling. Most investigations, so far, concerned Ca2+ signalling in the cytosol; however, signalling in the nucleus and other cell compartments such as mitochondria, ER and cell wall have also been reported. The specific “signature” of calcium, including duration, amplitude and frequency of the signalling, induced by different stresses is essential for a change of the physiological function. Different stores for calcium take part in the signalling under various types of stress. Of special interest is a comparison of signalling in tolerant and sensitive species and cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed A, Tajmir-Riahi HA (1993) Interaction of toxic metal ions Cd2+, Hg2+ and Pb2+ with light-harvesting proteins of chloroplast thylakoid membranes. An FTR studies. J Inorg Chem 50:235–243

    CAS  Google Scholar 

  • Alaoui-Sossé B, Genet P, Vinit-Dunand F, Toussaint M-L, Epron D, Badot P-M (2004) Effect of copper on growth in cucumber plants (Cucumus sativus) and its relationships with carbohydrate accumulation and changes in ion contents. Plant Sci 166:1213–1218

    Google Scholar 

  • Alonso MT, Villalobos C, Chamero P, Alvarez J, Garcia-Sancho J (2006) Calcium microdomains in mitochondria and nucleus. Cell Calcium 40:513–525

    PubMed  CAS  Google Scholar 

  • Arimura G-I, Garms S, Maffei M, Bossi S, Schultze B, Leitner M, Mithöfer A, Boland W (2008) Herbivore-induced terpenoid emission in Medicago truncatula: concerted action of jasmonate, ethylene and calcium signalling. Planta 227:453–464

    PubMed  CAS  Google Scholar 

  • Aurisano N, Bertani A, Reggiani R (1995) Involvement of calcium and calmodulin in protein and amino acid metabolism in rice roots under anoxia. Plant Cell Physiol 36:1525–1529

    CAS  Google Scholar 

  • Aurisano N, Bertani A, Reggiani R (1996) Evidence for the involvement of GTP-binding proteins in the process of anaerobic gamma-aminobuirate accumulation in rice roots. J Plant Physiol 149:517–519

    CAS  Google Scholar 

  • Axelsen KB, Palmgren MG (2001) Inventory of the superfamily of P-type ion pumps in Arabidopsis. Plant Physiol 126:696–706

    PubMed  CAS  Google Scholar 

  • Bach O, Agell N, Carafoli E (1992) Calcium and calmodulin function in the cell nucleus. Biochem Biophys Acta 1113:259–270

    Google Scholar 

  • Bailey-Serres J, Chang R (2005) Sensing and signalling in response to oxygen deprivation in plants and other organisms. Ann Bot 96:507–518

    PubMed  CAS  Google Scholar 

  • Bailey-Serres J, Voesenek L (2008) Flooding stress: acclimations and genetic diversity. Annu Rev Plant Biol 59:313–339

    PubMed  CAS  Google Scholar 

  • Baluska F, Parker JS, Barlow PW (1993) Specific patterns of cortical and endoplasmic microtubules associated with cell growth and tissue differentiation in roots of maize (Zea mays L). J Cell Sci 103:191–200

    Google Scholar 

  • Barcelo J, Poschenrieder C (2002) Fast root growth responses, root exudates and internal detoxification as clues to the mechanisms of aluminum toxicity and resistance. Environ Exp Bot 48:75–92

    CAS  Google Scholar 

  • Baxter I, Tchieu J, Sussman MR, Boutry M, Palmgren MG, Gribskov M, Harper JE, Axelsen KB (2003) Genomic comparison of P-type ATPase ion pumps in Arabidopsis and rice. Plant Physiol 132:618–628

    PubMed  CAS  Google Scholar 

  • Baxter-Burrell A, Yang Z, Springer PS, Bailey-Serres J (2002) RopGAP4-dependent Rop GTPase rheostat control of Arabidopsis oxygen deprivation tolerance. Science 296:2026–2028

    PubMed  CAS  Google Scholar 

  • Beligni MV, Lamattina L (2008) Nitric oxide counteracts cytotoxic processes mediated by reactive oxygen species in plant tissue. Planta 33:337–344

    Google Scholar 

  • Besson-Bard A, Courtois C, Gauthier A, Dahan J, Dobrowolska G, Jeandroz S, Pugin A, Wendehenne D (2008) Nitric oxide in plants: production and cross-talk with Ca2+ signalling. Mol Plant 1:218–228

    PubMed  CAS  Google Scholar 

  • Bittisnich D, Robinson D, Whitecross M (1989) Membrane-associated and intracellular free calcium levels in root cells under NaCl stress. In: Dainty J, de Michelis MI, Marre E, Rasi-Caldogno F (eds) Plant membrane transport: the current position. Proceedings of eighth international workshop on plant membrane transport, Venice, Italy, 25–30 June 1989. Elsevier, New York, pp 681–682

    Google Scholar 

  • Bkaily G (2006) The nucleus: a cell within the cell. Can J Physiol Pharmacol 84:279–507

    Google Scholar 

  • Blokhina OB, Chirkova TV, Fagerstedt KV (2001) Anoxic stress leads to hydrogen peroxide formation in plant cells. J Exp Bot 52:1179–1190

    PubMed  CAS  Google Scholar 

  • Blumwald E (2000) Sodium transport and salt tolerance in plants. Curr Opin Cell Biol 12:431–434

    PubMed  CAS  Google Scholar 

  • Bohnert HJ, Jensen RG (1996) Strategies for engineering water-stress tolerance in plants. Trends Biotechnol 14:89–97

    CAS  Google Scholar 

  • Boudsocq M, Lauriere C (2005) Osmotic signalling in plants. Multiple pathways mediated by emerging kinase families. Plant Physiol 138:1185–1194

    PubMed  CAS  Google Scholar 

  • Boursiac Y, Harper JF (2007) The origin and function of calmodulin regulated Ca2+ pumps in plants. J Bioenerg Biomembr 39:409–414

    PubMed  CAS  Google Scholar 

  • Brandizzi F, Irons SL, Evans DE (2004) The plant nuclear envelope: new prospects for poorly understood structure. New Phytol 163:227–246

    Google Scholar 

  • Briere C, Xiong TC, Mazars C, Ranjeva R (2006) Autonomous regulation of free Ca2+ concentrations in isolated plant cell nuclei: a mathematical analysis. Cell Calcium 39:293–303

    PubMed  CAS  Google Scholar 

  • Buringh P (1979) Introduction to the soils in tropical and subtropical regions, 3rd edn. PUDOC, Wageningen, 124p

    Google Scholar 

  • Bush DS (1995) Calcium regulation in plant cells and its role in signalling. Annu Rev Plant Physiol Plant Mol Biol 46:95–122

    CAS  Google Scholar 

  • Carafoli E (2002) Calcium signalling: a tale for all seasons. Proc Natl Acad Sci USA 99:1115–1122

    PubMed  CAS  Google Scholar 

  • Carpaneto A, Ivashikina N, Levchenko V, Krol E, Jeworutzki E, Zhu J-K, Hedrich R (2007) Cold transiently activates calcium-permeable channels in Arabidopsis mesophyll cells. Plant Physiol 143:487–494

    PubMed  CAS  Google Scholar 

  • Casdagli M (1992) Chaos and deterministic versus stochastic non-linear modelling. J R Statist Soc B 54:303–328

    Google Scholar 

  • Catala R, Santos E, Alonso JM, Ecker JR, Martinez-Zapater JM, Salinas J (2003) Mutations in the Ca2+/H+ transporter CAX1 increase CBF/DREB1 expression and the cold-accumulation response in Arabidopsis. Plant Cell 15:2940–2951

    PubMed  CAS  Google Scholar 

  • Chaoui A, Mazhoudi S, Ghorbal MN, Ferjani EE (1997) Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzymes activity in bean (Phaseolus vulgaris L.). Plant Sci 127:139–147

    CAS  Google Scholar 

  • Chen THH, Murata N (2002) Enhancement of tolerance to abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr Opin Plant Biol 5:250–257

    PubMed  CAS  Google Scholar 

  • Cheng NH, Pittman JK, Barkla BJ, Shigaki T, Hirschi KD (2003) The Arabidopsis cax1 mutant exhibits impaired ion homeostasis, development, and hormonal responses and reveals interplay among vacuolar transporters. Plant Cell 15:347–364

    PubMed  CAS  Google Scholar 

  • Chiang HEC, Lo JC, Yeh KC (2006) Genes associated with heavy metal tolerance and accumulation in Zn/Cd hyperaccumulator Arabidopsis halleri: a genomic survey with cDNA microarray. Environ Sci Technol 40:6792–6798

    PubMed  CAS  Google Scholar 

  • Chinnusamy V, Jagendorf A, Zhu JK (2005) Understanding and improving salt tolerance in plants. Crop Sci 45:437–448

    CAS  Google Scholar 

  • Cho HT, Hong YN (1995) Effect of IAA on synthesis and activity of plasma membrane H+-ATPase of sunflower hypocotyls, in relation to IAA-induced cell elongation and H+ excretion. J Plant Physiol 145:717–725

    CAS  Google Scholar 

  • Cho HT, Hong YN (1996) Effect of calcium channel blockers on the IAA-induced cell elongation of sunflower hypocotyls segments. J Plant Physiol 149:377–383

    CAS  Google Scholar 

  • Clarkson DT (1965) The effect of aluminium and some trivalent metal cations on cell division in the root apices of Allium cepa. Ann Bot 29:309–315

    Google Scholar 

  • Clarkson DT, Brownlee C, Ayling SM (1988) Cytoplasmic calcium measurements in intact higher plant cells: results from fluorescence ratio imaging of fura-2. J Cell Sci 91:71–80

    CAS  Google Scholar 

  • Cleland RE, Prins HBA, Yarper JR, Higinbotham N (1977) Rapid hormone-induced hyperpolarisation of the oat coleoptile transmembrane potential. Plant Physiol 59:395–397

    PubMed  CAS  Google Scholar 

  • Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212:475–486

    PubMed  CAS  Google Scholar 

  • Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88:1707–1719

    PubMed  CAS  Google Scholar 

  • Clijsters H, Cuypers A, Vangronsveld J (1999) Physiological responses to heavy metals in higher plants: defense against oxidative stress. Z Naturforsch 54:730–734

    CAS  Google Scholar 

  • Colangelo EP, Guerinot ML (2006) Put the metal to the petal: metal uptake and transport throughout plants. Curr Opin Plant Biol 9:322–330

    PubMed  CAS  Google Scholar 

  • Covington ME, Harmer SL (2007) The circadian clock regulates auxin signalling and responses in Arabidopsis. PLoS Biol 5:1773–1784

    CAS  Google Scholar 

  • Cramer GR, Jones RL (1996) Osmotic stress and abscisic acid reduce cytosolic calcium activities in roots of Arabidopsis thaliana. Plant Cell Environ 19:1291–1298

    CAS  Google Scholar 

  • Crawford RMM, Braendle R (1996) Oxygen deprivation stress in a changing environment. J Exp Bot 47:145–159

    CAS  Google Scholar 

  • D’Angeli S, Malho R, Altamura MM (2003) Low-temperature sensing in olive tree: calcium signalling and cold acclimation. Plant Sci 165:1303–1313

    Google Scholar 

  • D’Onofrio C, Lindberg S (2009) Sodium induces simultaneous changes in cytosolic calcium and pH in salt-tolerant quince protoplasts. J Plant Physiol 166:1755–1763

    PubMed  Google Scholar 

  • Dammann C, Ichida A, Hong B, Romanowsky SM, Hrabak E, Harmon AC, Pickard BG, Harper JF (2003) Subcellular targeting of nine calcium-dependent protein kinase isoforms from Arabidopsis. Plant Physiol 132:1840–1848

    PubMed  CAS  Google Scholar 

  • Davenport R (2002) Glutamate receptors in plants. Ann Bot 90:549–557

    PubMed  CAS  Google Scholar 

  • De Filippis LF (1979) The effect of heavy metal compounds on the permeability of Chlorella cells. Z Pflanzen Physiol 92:39–49

    Google Scholar 

  • DeFalco TA, Bender KW, Snedden WA (2010) Breaking the code: Ca2+ sensors in plant signalling. Biochem J 425:27–40

    CAS  Google Scholar 

  • Delhaize E, Ryan PR, Randall P (1993) Aluminium tolerance in wheat (Triticum aestivum L.). II. Aluminium-stimulated excretion of malic acid from root apices. Plant Physiol 103:695–702

    PubMed  CAS  Google Scholar 

  • DeMarty M, Morvan C, Thellier M (1984) Calcium and the cell wall. Plant Cell Environ 7:441–448

    CAS  Google Scholar 

  • Demidchik V, Maathuis FJM (2007) Physiological roles of nonselective cation channels in plants: from salt stress to signalling and development. New Phytol 175:387–404

    PubMed  CAS  Google Scholar 

  • Denarie J, Maillet F, Poinsot V, Andre O, Becard G, Gueunier M, Cromer L et al (2010) International application published under patent cooperation treaty (PCT) WO 2010/049817A2

    Google Scholar 

  • Dennis ES, Dolferus R, Ellis M, Rahman M, Wu Y, Hoeren FU, Grover A, Ismond KP, Good AG, Peacock WJ (2000) Molecular strategies for improving waterlogging tolerance in plants. J Exp Bot 51:89–97

    PubMed  CAS  Google Scholar 

  • Desikan R, Hancock JT, Bright J et al (2005) A role for ETR1 in hydrogen peroxide signalling in stomatal guard cells. Plant Physiol 137:831–834

    PubMed  CAS  Google Scholar 

  • Dharmasiri N, Dharmasiri S, Estelle M (2005) The F-box protein TIR1 is an auxin receptor. Nature 435: 441–445

    PubMed  CAS  Google Scholar 

  • Dodd AN, Kudla J, Sanders D (2010) The language of calcium signalling. Annu Rev Plant Biol 61: 593–620

    PubMed  CAS  Google Scholar 

  • Dolferus R, Ellis M, De Bruxelles G, Trevaskis B, Hoeren F, Dennis ES, Peacock WJ (1997) Strategies of gene action in Arabidopsis during hypoxia. Ann Bot 79(Suppl A):21–31

    CAS  Google Scholar 

  • Drew MC (1997) Oxygen deficiency and root metabolism: injury and acclimation under hypoxia and anoxia. Annu Rev Plant Physiol Plant Mol Biol 48:223–250

    PubMed  CAS  Google Scholar 

  • Du L, Ali GS, Simons KA, Hou J, Yang T et al (2009) Ca2+/calmodulin regulates salicylic-acid-mediated plant immunity. Nature 457:1152–1158

    Google Scholar 

  • Endre G, Kereszt A, Kevei Z, Mihacea S, Kalo P, Kiss GB (2002) A receptor kinase gene regulating symbiotic nodule development. Nature 417:962–966

    PubMed  CAS  Google Scholar 

  • Essah PA (2000) Sodium transport in Arabidopsis thaliana. PhD thesis. University of Cambridge, UK

    Google Scholar 

  • Fähling M (2008) Cellular oxygen sensing, signalling and how to survive translational arrest in hypoxia. Acta Physiol 195:205–230

    Google Scholar 

  • Felle H (1988) Auxin causes oscillations of cytosolic free calcium and pH in Zea mays coleoptiles. Planta 174:495–499

    CAS  Google Scholar 

  • Felle H, Hepler PK (1997) The cytosolic Ca2+ concentration gradient of Sinapis alba root hairs revealed by Ca2+-selective microelectrode tests and Fura-dextran ratio imaging. Plant Physiol 114:39–45

    PubMed  CAS  Google Scholar 

  • Felle HH, Herrmann A, Hückelhoven R, Kogel K-H (2005) Root-to-shoot signalling: apoplastic alkalinization, a general stress response and defense factor in barley (Hordeum vulgare). Protoplasma 227:17–24

    PubMed  CAS  Google Scholar 

  • Finkler A, Kaplan B, Fromm H (2007) Ca2+-responsive cis elements in plants. Plant Signal Behav 2:17–19

    PubMed  Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963

    PubMed  CAS  Google Scholar 

  • Flowers TJ, Läuchli A (1983) Sodium versus potassium: substitution and compartmentalization. In: Läuchli A, Bieleski RL (eds) Inorganic plant nutrition, vol 15B. Springer, Berlin, pp 651–681

    Google Scholar 

  • Flowers TJ, Yeo AR (1995) Breeding for salinity resistance in crop plants: where next? Aust J Plant Physiol 22:875–884

    Google Scholar 

  • Flowers TJ, Galal HK, Bromham L (2010a) Evolution of halophytes: multiple origins of salt tolerance in land plants. Funct Plant Biol 37:604–612

    Google Scholar 

  • Flowers TJ, Gaur PM, Laxmipathi Gowda CL, Krishnamurthy L, Samineni S, Siddique KHM, Turner NC, Vadez V, Varshney RK, Colmer TD (2010b) Salt sensitivity in chickpea. Plant Cell Environ 33:490–509

    PubMed  CAS  Google Scholar 

  • Foreman D, Demidchik V, Bothwell JHF, Myona P, Miedema H, Torres MA, Linsted P, Costa SE et al (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442–446

    PubMed  CAS  Google Scholar 

  • Foy CD (1984) Physiological effects of hydrogen aluminium and manganese toxicities in acid soils. In: Adams FJ (ed) Soil acidity and liming, 2nd edn. American Society of Agronomy, Madison, WI, pp 57–97. ISBN 0-89118-080-X

    Google Scholar 

  • Foy CD, Chaney RL, White MC (1978) The physiology of metal toxicity in plants. Annu Rev Plant Physiol Plant Mol Biol 29:511–566

    CAS  Google Scholar 

  • Foyer CH, Nocter G (2003) Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plant 119:355–364

    CAS  Google Scholar 

  • Fu X, Chang J, An L, Zhang M, Xu S, Chen T, Liu Y, Xin H, Wang J (2006) Association of the cold-hardiness of Chorispora bungeana with the distribution and accumulation of calcium in the cells and tissues. Environ Exp Bot 55:282–293

    CAS  Google Scholar 

  • Galon Y, Aloni R, Nachmias D, Snir O, Feldmesser E, Scase-Field S, Boyse JM, Bouché N, Knight MR, Fromm H (2010a) Calmodulin-binding transcription activator 1 mediates auxin signalling and responds to stress in Arabidopsis. Planta 232:165–178

    PubMed  CAS  Google Scholar 

  • Galon Y, Finkler A, Fromm H (2010b) Calcium-regulated transcription in plants. Mol Plant 3:653–669

    PubMed  CAS  Google Scholar 

  • Gao D, Knight MR, Trewavas AJ, Sattelmacher B, Plieth C (2004) Self-reporting Arabidopsis expressing pH and [Ca2+] indicators unveil ion dynamics in the cytoplasm and in the apoplast under abiotic stress. Plant Physiol 134:898–908

    PubMed  CAS  Google Scholar 

  • Garciadeblas B, Benito B, Rodriguez-Navarro A (2001) Plant cell express stress calcium ATPases but apparently no sodium ATPase. Plant Soil 235:189–192

    Google Scholar 

  • Gehring CA, Irving H, Parish RW (1990) Effects of auxin and abscisic acid on cytosolic calcium and pH in plant cells. Proc Natl Acad Sci USA 87:9645–9649

    PubMed  CAS  Google Scholar 

  • Gibbs J, Greenway H (2003) Mechanisms of anoxia tolerance in plants. I. Growth, survival and anaerobic catabolism. Funct Plant Biol 30:1–47

    CAS  Google Scholar 

  • Glenn EP, Brown JJ, Khan MJ (1997) Mechanisms of salt tolerance in higher plants. In: Basra AS, Basra RK (eds) Mechanisms of environmental stress resistance in plants. Harwood Academic Publishers, Amsterdam, The Netherlands, pp 83–110

    Google Scholar 

  • Gomes DA, Leite MF, Bennett AM, Nathanson MH (2006) Calcium signalling in the nucleus. Can J Physiol Pharmacol 84:325–332

    PubMed  CAS  Google Scholar 

  • Gong M, van der Luit AH, Knight MR, Trewavas AJ (1998) Heat-shock-induced changes in intracellular Ca2+ level in Tobacco seedling in relation to thermotolerance. Plant Physiol 116:429–437

    CAS  Google Scholar 

  • Gora L, Clijsters H (1989) Effect of copper and zinc on the ethylene metabolism in Phaseolus vulgaris L. In: Clijsters H (ed) Biochemical and physiological aspects of ethylene production in lower and higher plants. Kluwer, Dordrecht, The Netherlands, pp 219–228

    Google Scholar 

  • Gorecka KM, Thouverey C, Buchet R, Pikula S (2007) Potential role of annexin AnnAt1 from Arabidopsis thaliana in pH-mediated cellular response to environmental stimuli. Plant Cell Physiol 48:792–803

    PubMed  CAS  Google Scholar 

  • Green J, Crack JC, Thomson AJ, LeBrun NE (2009) Bacterial sensors of oxygen. Curr Opin Microbiol 12:145–151

    PubMed  CAS  Google Scholar 

  • Greenway H, Gibbs J (2003) Mechanisms of anoxia tolerance in plants. II. Energy requirements for maintenance and energy distribution to essential processes. Funct Plant Biol 30:999–1036

    CAS  Google Scholar 

  • Greenway H, Munns R (1980) Mechanisms of salt tolerance in non halophytes. Annu Rev Plant Physiol Plant Mol Biol 31:149–190

    CAS  Google Scholar 

  • Greger M, Lindberg S (1986) Effects of Cd2+ and EDTA on young sugar beets (Beta vulgaris). I. Cd2+ uptake and sugar accumulation. Physiol Plant 66:69–74

    CAS  Google Scholar 

  • Greger M, Lindberg S (1987) Effects of Cd2+ and EDTA on young sugar beets (Beta vulgaris). II. Net uptake and distribution of Mg2+, Ca2+ and Fe2+/Fe3+. Physiol Plant 69:81–86

    CAS  Google Scholar 

  • Greger M, Brammer E, Lindberg S, Larsson G, Idestam-Almquist J (1991) Uptake and physiological effects of cadmium in sugar beet (Beta vulgaris) related to mineral provision. J Exp Bot 239:729–737

    Google Scholar 

  • Gupta V, Willits MG, Galzebrook J (2000) Arabidopsis thaliana EDS4 contributes to salicylic acid (SA)-dependent expression of defense responses. Evidence for inhibition of jasmonic acid signalling by SA. Mol Plant Microbe Interact 13:503–511

    PubMed  CAS  Google Scholar 

  • Guy CL (1990) Cold acclimation and freezing stress tolerance: Role of protein metabolism. Annu Rev Plant Physiol Plant Mol Biol 41:187–223

    CAS  Google Scholar 

  • Halfter U, Ishitani M, Zhu JK (2000) The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proc Natl Acad Sci USA 97:3730–3734

    PubMed  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 366:1–11

    Google Scholar 

  • Halperin SJ, Gilroy S, Lynch JP (2003) Sodium chloride reduces growth and cytosolic calcium, but does not affect cytosolic pH, in root hairs of Arabidopsis ­thaliana L. J Exp Bot 54:1269–1280

    PubMed  CAS  Google Scholar 

  • Harper JF, Schaller GE, Sussman MR, Putnan-Evans C, Charbonneau H, Harmon AC (1991) A novel calcium-dependent protein kinase with a regulatory domain similar to calmodulin. Science 252:951–954

    PubMed  CAS  Google Scholar 

  • Harper JF, Breton G, Harmon A (2004) Decoding Ca2+ signals through plant protein kinases. Annu Rev Plant Biol 55:263–288

    PubMed  CAS  Google Scholar 

  • Hart JJ, Welch RM, Norvell WA, Sullivan LA, Kochian LV (1998) Characterization of cadmium binding, uptake, and translocation in intact seedlings of bread and durum wheat cultivars. Plant Physiol 116: 1413–1420

    PubMed  CAS  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    PubMed  CAS  Google Scholar 

  • Hashimoto Y, Perrino BA, Soderling TR (1990) Identification of an autoinhibitory domain in calcineurin. J Biol Chem 265:1924–1927

    PubMed  CAS  Google Scholar 

  • Haug AR (1984) Molecular aspects of aluminium toxicity. CRC Crit Rev Plant Sci 1:345–373

    CAS  Google Scholar 

  • Henriksson E, Henriksson KN (2005) Salt-stress signalling and the role of calcium in the regulation of the Arabidopsis ATHB7 gene. Plant Cell Environ 28:202–210

    CAS  Google Scholar 

  • Hepler PK (1994) The role of calcium in cell division. Cell Calcium 16:322–330

    PubMed  CAS  Google Scholar 

  • Hepler PK (2005) Calcium: a central regulator of plant growth and development. Plant Cell 17:2142–2155

    PubMed  CAS  Google Scholar 

  • Hetherington AM, Brownlee C (2004) The generation of Ca2+ signals in plants. Annu Rev Plant Biol 55:401–427

    PubMed  CAS  Google Scholar 

  • Hirschi K (2001) Vacuolar H+/Ca2+ transport: who’s directing the traffic? Trends Plant Sci 6:100–104

    PubMed  CAS  Google Scholar 

  • Horst WJ, Wager A, Marschner H (1982) Mucilage protects root meristems from aluminium injury. Z Pflanzen Physiol 105:435–444

    CAS  Google Scholar 

  • Hrabak EM, Chan CWM, Gribskov M, Harper JF, Choi JH, Halford N et al (2003) The Arabidopsis CDPK-snRK superfamily of protein kinases. Plant Physiol 132:666–680

    PubMed  CAS  Google Scholar 

  • Hu X, Li W, Chen Q, Yang Y (2009) Early signal transduction linking the synthesis of jasmonic acid in plant. Plant Signal Behav 4:696–697

    PubMed  CAS  Google Scholar 

  • Hussein D, Haydon MJ, Wang Y, Wong E, Sherson SM, Young J, Camakaris J, Harper JF, Cobett CS (2004) P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis. Plant Cell 16:1327–1339

    Google Scholar 

  • Hwang I, Sze H, Harper JF (2000) A calcium-dependent protein kinase can inhibit a calmodulin-stimulated Ca2+ pump (ACA2) located in the endoplasmatic reticulum of Arabidopsis. Proc Natl Acad Sci USA 97:6224–6229

    PubMed  CAS  Google Scholar 

  • Irving H, Gehring CA, Parish RW (1992) Changes in cytosolic pH and calcium of guard cells proceed stomatal movements. Proc Natl Acad Sci USA 89:1790–1794

    PubMed  CAS  Google Scholar 

  • Jaiswal JK (2001) Calcium-how and why? J Biosci 26:357–363

    PubMed  CAS  Google Scholar 

  • Javed T, Lindberg S, Greger M; unpublished

    PubMed  CAS  Google Scholar 

  • Johnson C, Knight M, Kondo T, Masson P, Sedbrook J, Haley A, Trewavas A (1995) Circadian oscillations of cytosolic and chloroplastic free calcium in plants. Science 269:1863–1865

    PubMed  CAS  Google Scholar 

  • Jones DL, Kochian LV (1995) Aluminum inhibition of the inositol 1,4,5-triphoshate signal transduction pathway in wheat roots: a role in aluminum toxicity? Plant Cell 7:1913–1922

    PubMed  CAS  Google Scholar 

  • Jones DL, Kochian LV, Gilroy S (1998) Aluminum induces a decrease in cytosolic calcium concentration in BY-2 tobacco cell cultures. Plant Physiol 116:81–89

    CAS  Google Scholar 

  • Jou Y, Chiang CP, Jauh GY, Yen HE (2006) Functional characterization of ice plant SKD1, an AAA-type ATPase associated with the endoplasmic reticulum-golgi network, and its role in adaptation to salt stress. Plant Physiol 141:135–146

    PubMed  CAS  Google Scholar 

  • Kabata K, Janicka-Russak M, Burzynski M, Klobus G (2008) Comparison of heavy metal effect on the proton pumps of plasma membrane and tonoplast in cucumber root cells. J Plant Physiol 165:278–288

    Google Scholar 

  • Kader MA, Lindberg S (2005) Uptake of sodium in protoplasts of salt-sensitive and salt-tolerant cultivars of rice Oryza sativa L. determined by the fluorescent dye SBFI. J Exp Bot 56:3149–3158

    PubMed  CAS  Google Scholar 

  • Kader A, Lindberg S (2008) Cellular traits for sodium tolerance in rice (Oryza sativa L). Plant Biotechnol 25:247–255

    CAS  Google Scholar 

  • Kader A, Lindberg S (2010) Cytosolic calcium and pH signalling in plants under salinity stress. Plant Signal Behav 5(3):1–7

    Google Scholar 

  • Kader A, Seidel T, Golldack D, Lindberg S (2006) Expressions of OsHKT1, OsHKT2 and OsVHA are differently regulated under NaCl stress in salt-sensitive and salt-tolerant rice (Oryza sativa L.) cultivars. Exp Bot 57:4257–4268

    PubMed  CAS  Google Scholar 

  • Kader MA, Lindberg S, Seidel T, Golldack D, Yemelyanov V (2007) Sodium sensing induces different changes in free cytosolic calcium concentration and pH in salt-tolerant and salt-sensitive rice (Oryza sativa L.) cultivars. Physiol Plant 130:99–111

    CAS  Google Scholar 

  • Kantz H, Schreiber T (1997) Nonliniar time series analyses. Cambridge University Press, New York

    Google Scholar 

  • Kawano T, Kadono T, Furuichi T, Muto S, Lapeyrie F (2003) Aluminum-induced distortion in calcium signalling involving oxidative bursts and channel regulation in tobacco BY-2 cells. Biochem Biophys Res Comm 308:35–42

    PubMed  CAS  Google Scholar 

  • Kende H, Van Der Knaap E, Cho HT (1998) Deepwater rice: a model plant to study stem elongation. Plant Physiol 118:1105–1110

    PubMed  CAS  Google Scholar 

  • Kepinski S, Leyser O (2005) The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435:446–451

    PubMed  CAS  Google Scholar 

  • Khan MA, Ungar IA, Showalter AM (2005) Salt stimulation and tolerance in an intertidal stem-succulent halophyte. J Plant Nutr 28:1365–1374

    CAS  Google Scholar 

  • Kiegle E, Moore CA, Haseloff J, Tester MA, Knight MR (2000) Cell-type-specific calcium responses to drought, salt and cold in Arabidopsis root. Plant J 23:267–278

    PubMed  CAS  Google Scholar 

  • Kim DY, Bovet L, Maeshima M, Martinoia E, Lee Y (2007) The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. Plant J 50:207–218

    PubMed  CAS  Google Scholar 

  • Knight H (2000) Calcium signalling during abiotic stress in plants. Int Rev Cytol 195:269–324

    PubMed  CAS  Google Scholar 

  • Knight MR (2002) Signal transduction leading to low-temperature tolerance in Arabidopsis thaliana. Philos Trans R Soc Lond B Biol Sci 357:871–875

    PubMed  CAS  Google Scholar 

  • Knight H, Trewavas AJ, Knight MR (1996) Cold calcium signalling in Arabidopsis involves two cellular pools and a change in calcium signature after acclimation. Plant Cell 8:489–503

    PubMed  CAS  Google Scholar 

  • Knight H, Trewavas AJ, Knight MR (1997) Calcium signalling in Arabidopsis thaliana responding to drought and salinity. Plant J 12:1067–1078

    PubMed  CAS  Google Scholar 

  • Kochian KV (1995) Cellular mechanisms of aluminum toxicity and tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 46:237–260

    CAS  Google Scholar 

  • Kosuta S, Hazledine S, Sun J, Miwa H, Morris RJ et al (2008) Differential and chaotic calcium signatures in the symbiosis signalling pathway of legumes. Proc Natl Acad Sci USA 105:9823–9828

    PubMed  CAS  Google Scholar 

  • Kreimer G, Melkonian M, Holtum JAM, Latzko E (1985) Characterization of calcium fluxes across the envelope of intact spinach chloroplasts. Planta 166:515–523

    CAS  Google Scholar 

  • Krol E, Dziubinska H, Trebacz K (2004) Low-temperature-induced trans-membrane potential changes in mesophyll cells of Arabidopsis thaliana, Heliathus annuus and Vicia faba. Physiol Plant 120:265–270

    PubMed  CAS  Google Scholar 

  • Kudla J, Batistic O, Hashimoto K (2010) Calcium signals: the lead currency of plant information processing. Plant Cell 22:541–563

    PubMed  CAS  Google Scholar 

  • Kummer U, Krajnc B, Pahle J, Green AK, Dixon CJ, Marhl M (2005) Transition from stochastic to deterministic behavior in calcium oscillations. Biophys J 89:1603–1611

    PubMed  CAS  Google Scholar 

  • Kurkela S, Franck M (1990) Cloning and characterisation of a cold- and ABA-induced Arabidopsis gene. Plant Mol Biol 15:137–144

    PubMed  CAS  Google Scholar 

  • Lahiri S, Roy A, Baby SM, Hoshi T, Semenza GL, Prabhakar NR (2006) Oxygen sensing in the body. Prog Biophys Mol Biol 91:249–286

    PubMed  CAS  Google Scholar 

  • Lamb C, Dixon R (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 48:251–275

    PubMed  CAS  Google Scholar 

  • Laohavisit A, Mortimer JC, Demidchik V, Coxon KM, Stancombe MA et al (2009) Zea mays annexins modulate cytosolic free Ca2+ and generate a Ca2+-permeable conductance. Plant Cell 21:479–493

    PubMed  CAS  Google Scholar 

  • Lazof DB, Goldsmith JG, Rufty TW, Linton RW (1994) Rapid uptake of aluminum into cells of soybean root tips. Plant Physiol 106:1107–1114

    PubMed  CAS  Google Scholar 

  • Lecourieux D, Lamotte O, Bourque S, Wendehenne D, Mazars C et al (2005) Proteinaceous and oligosaccharidic elicitors induce different calcium signatures in the nucleus of tobacco cells. Cell Calcium 38:527–538

    PubMed  CAS  Google Scholar 

  • Lee Y, Jung JW, Kim SK, Hwang YS, Lee JS, Kim SH (2008) Ethylene-induced opposite redistributions of calcium and auxin are essential components in the development of tomato petiolar epinastic curvature. Plant Physiol Biochem 46:685–693

    PubMed  CAS  Google Scholar 

  • Levina NN, Lew RR, Hyde GJ, Heath IB (1995) The roles of Ca2+ and plasma membrane ion channels in hyphal tip growth of Neurospora crassa. J Cell Sci 108: 3405–3417

    PubMed  CAS  Google Scholar 

  • Levine A, Pennell RI, Alvarez ME, Palmer R, Lamb C (1996) Calcium mediated apoptosis in a plant hypersensitive disease resistance response. Curr Biol 6:427–437

    PubMed  CAS  Google Scholar 

  • Liang C, Zhang XY, Luo Y, Wang GP, Zou Q, Wang W (2009) Over-accumulation of glycine betaine alleviates the negative effects of salt stress in wheat. Russian J Plant Physiol 56:370–376

    CAS  Google Scholar 

  • Licausi F, Perata P (2009) Low oxygen signalling and tolerance in plants. Adv Bot Res 50:139–198

    CAS  Google Scholar 

  • Limpens E, Franken C, Smit P, Willemse J, Bisseling T, Guerts R (2003) LysM domain receptor kinases regulation rhizobial nod factor-induced infection. Science 302:630–633

    PubMed  CAS  Google Scholar 

  • Lin C, Guo WW, Everson E, Thomashow MF (1990) Cold acclimation in Arabidopsis and wheat. A response associated with expression of related genes encoding boiling-stable polypeptides. Plant Physiol 94:1078–1083

    PubMed  CAS  Google Scholar 

  • Lin C, Yu Y, Kadono T, Iwata M, Uemura K, Furuichi T, Kuse M, Isobe M, Yamamoto Y et al (2005) Action of aluminum, novel TPC1-type channel inhibitor, against salicylate-induced and cold-shock-induced calcium influx in tobacco BY-2 cells. Biochem Biophys Res Commun 332:823–830

    PubMed  CAS  Google Scholar 

  • Lindberg S (1990) Aluminium interactions with K+ (86Rb+) and 45Ca2+ fluxes in three cultivars of sugar beet (Beta vulgaris). Physiol Plant 79:275–282

    CAS  Google Scholar 

  • Lindberg S, Greger M (2002) Plant genotypic differences under metal deficient and enriched conditions. In: Prasad MNV, Strzaflka K (eds) Physiology and biochemistry of metal toxicity and tolerance in plants. Kluwer Academic Press, Dordrecht, The Netherlands

    Google Scholar 

  • Lindberg S, Griffiths G (1993) Aluminium effects on ATPase activity and lipid composition of plasma membranes in sugar beet roots. J Exp Bot 44(267):1543–1550

    CAS  Google Scholar 

  • Lindberg S, Strid H (1997) Aluminium induces rapid changes in cytosolic pH and free calcium and potassium concentrations in root protoplasts of wheat (Triticum aestivum). Physiol Plant 99:405–414

    CAS  Google Scholar 

  • Lindberg S, Wingstrand G (1985) Mechanism for Cd2+ inhibition of (K++ Mg2+)ATPase activity and K+(86Rb+) uptake in roots of sugar beet (Beta vulgaris). Physiol Plant 63:181–185

    CAS  Google Scholar 

  • Lindberg S, Szynkier K, Greger M (1991) Aluminium effects on transmembrane potential in cells of fibrous roots of sugar beet. Physiol Plant 79:275–282

    Google Scholar 

  • Lindberg S, Landberg T, Greger M (2004) A new method to detect cadmium uptake in protoplasts. Planta 219:526–532

    PubMed  CAS  Google Scholar 

  • Lindberg S, Landberg T, Greger M (2007) Cadmium uptake and induction of phytochelatins in wheat protoplasts. Plant Physiol Biochem 45:47–53

    PubMed  CAS  Google Scholar 

  • Lindsay WL (1979) Chemical equilibria in soils. Wiley, New York, pp 34–49

    Google Scholar 

  • Liu X, Shi WL, Zhang SQ, Lou CH (2005) Calcium involved in the signalling pathway of jasmonic acid induced stomatal closure of Vicea faba. J Exp Biol Acta 38:297–302

    CAS  Google Scholar 

  • Logan DC, Knight MR (2003) Mitochondrial and cytosolic calcium dynamics are differentially regulated in plants. Plant Physiol 133:21–24

    PubMed  CAS  Google Scholar 

  • Luan S, Li W, Rusnak F, Assmann SM, Schreiber SL (1993) Immunosuppressants implicate protein phosphatase regulation of K+ channels in guard cells. Proc Natl Acad Sci USA 90:2202–2206

    PubMed  CAS  Google Scholar 

  • Luan S, Lan W, Lee SC (2009) Potassium nutrition, sodium toxicity, and calcium signalling: connections through the CBL-CIPK network. Curr Opin Plant Biol 12:339–346

    PubMed  CAS  Google Scholar 

  • Ludwig AA, Saitoh H, Felix G, Freymark G, Miersch O, Wasternack C, Boller T, Jones JD, Romeis T (2005) Ethylene-mediated cross-talk between calcium-dependent protein kinase and MAPK signalling controls stress responses in plants. Proc Natl Acad Sci USA 102:10736–10741

    PubMed  CAS  Google Scholar 

  • Lynch J, Läuchli A (1988) Salinity affects intracellular calcium in corn root protoplasts. Plant Physiol 87:351–356

    PubMed  CAS  Google Scholar 

  • Lynch J, Polito VS, Läuchli A (1989) Salinity stress increases cytoplasmic calcium activity in maize root protoplasts. Plant Physiol 90:1271–1274

    PubMed  CAS  Google Scholar 

  • Ma W, Berkowitz GA (2007) The grateful dead: calcium and cell death in plant innuate immunity. Cell Microbiol 9:2571–2585

    PubMed  CAS  Google Scholar 

  • Ma L, Xu X, Cui S, Sun D (1999) The presence of a heterotrimeric G protein and its role in signal transduction of extracellular calmodulin in pollen germination and tube growth. Plant Cell 11:1351–1363

    PubMed  CAS  Google Scholar 

  • Ma Y, Song W, Liu Z, Zhang H, Guo X, Shao H, Ni F (2009) The cell dynamic changing of Ca2+ cellular localization in maize leaflets under drought stress. C R Biol 332:351–362

    PubMed  CAS  Google Scholar 

  • Madsen EB, Madsen LH, Radutoiu S, Olbryt M, Rakwalska M, Szczglowski K, Sato S et al (2003) A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals. Nature 425:637–640

    PubMed  CAS  Google Scholar 

  • Maksymiec W, Baszynski T (1999) Are calcium and calcium channels involved in the mechanisms of Cu2+ toxicity in bean plants? The influence of leaf age. Photosynthetica 36:267–278

    CAS  Google Scholar 

  • Maksymiec W, Krupa Z (2002) Jasmonate and heavy metals in Arabidopsis plants-a similar physiological response to both stressors? J Plant Physiol 159:509–515

    CAS  Google Scholar 

  • Maksymiec W, Krupa Z (2006) The effects of short-term exposition to Cd, excess Cu ions and jasmonate on oxidative stress appearing in Arabidopsis thaliana. Environ Exp Bot 57:187–194

    CAS  Google Scholar 

  • Maksymiec W, Russa R, Urbanik-Sypniewska T, Baszynski T (1994) Effect of excess Cu on photosynthetic apparatus of runner bean leaves treated at two different growth stages. Physiol Plant 91:715–721

    CAS  Google Scholar 

  • Maksymiek W (1997) Effect of copper on cellular processes in higher plants. Photosynthetica 34:321–342

    Google Scholar 

  • Maksymiek W (2007) Signalling responses in plants to heavy metal stress. Acta Physiol Plant 29:177–187

    Google Scholar 

  • Malho R, Moutinho A, Vanderluit A, Trewavas AJ (1998) Spatial characterization of calcium signalling: the calcium wave as a basic unit in plant cell calcium signalling. Philos Trans R Soc Lond B Biol Sci 353:1463–1473

    CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, London

    Google Scholar 

  • Martin ML, Busconi L (2001) A rice membrane-bound calcium-dependent protein kinase is activated in response to low temperature. Plant Physiol 125:1442–1449

    PubMed  CAS  Google Scholar 

  • Martínez-Beltran J, Manzur CL (2005) Overview of salinity problems in the world and FAO strategies to address the problem. In: Managing saline soils and water: science, technology and social issues. Proceedings international salinity forum. Riverside, CA, pp 311–313

    Google Scholar 

  • Matsumoto H (1988) Inhibition of proton transport ­activity of microsomal membrane vesicles of barley roots by aluminum. Soil Sci Plant Nutr 34:499–506

    CAS  Google Scholar 

  • Matsumoto H (2000) Cell biology of aluminium toxicity and tolerance in higher plants. Int Rev Cytol 200:1–46

    PubMed  CAS  Google Scholar 

  • Matsumoto H, Hirasawa E, Torikai H, Takahashi E (1976) Plant Cell Physiol 17:127–137

    CAS  Google Scholar 

  • Mazars C, Bourque S, Mithöfer A, Pugin A, Ranjeva R (2009) Calcium homeostasis in plant cell nuclei. New Phytol 181:261–274

    PubMed  CAS  Google Scholar 

  • Mazars C, Thuleau P, Lamotte O, Bourque S (2010) Cross-talk between ROS and calcium in regulation of nuclear activities. Mol Plant 3:1–13

    Google Scholar 

  • McAinsh MR, Pittman JK (2009) Shaping the calcium signature. New Phytol 181:275–294

    PubMed  CAS  Google Scholar 

  • Metwally A, Finkelmeier I, Georgi M, Dietz KJ (2003) Salicylic acid alleviates the cadmium toxicity in barley seedlings. Plant Physiol 132:272–281

    PubMed  CAS  Google Scholar 

  • Meyer T, Allbritton NL, Oancea E (1995) Regulation of nuclear calcium concentration. Ciba Found Symp 188:252–262

    PubMed  CAS  Google Scholar 

  • Mironova GD, Belosludtsev KN, Belosludtseva NV, Gritsenko EN, Khodorov BI, Saris N-E (2007) Mitochondrial Ca2+ cycle mediated by palmitate-activated cyclosporine A-insensitive pore. J Bioenerg Biomembr 39:167–174

    PubMed  CAS  Google Scholar 

  • Miyazaki S, Koga R, Bohnert HJ, Fakuhara T (1999) Tissue and environmental response specific expression of 10 PP2C transcripts in Mesembryanthemum crystallinum. Mol Gen Genet 261:307–316

    PubMed  CAS  Google Scholar 

  • Monroy AF, Dhindsa R (1995) Low-temperature signal transduction: induction of cold acclimation-specific genes of alfalfa by calcium at 25°C. Plant Cell 7:321–331

    PubMed  CAS  Google Scholar 

  • Monroy AF, Sarhan F, Dhindsa RS (1993) Cold-induced changes in freezing tolerance, protein phosphorylation, and gene expression: evidence for a role of calcium. Plant Physiol 102:1227–1235

    PubMed  CAS  Google Scholar 

  • Morel M, Crouzet J, Gravot A, Auroy P, Leonhardt N, Vavasseur A, Richaud P (2009) AtHMA3 a P1B-ATPase allowing CD/Zn/Co/Pb vacuolar storage in Arabidopsis. Plant Physiol 149:894–904

    PubMed  CAS  Google Scholar 

  • Mori IC, Schroeder JI (2004) Reactive oxygen species activation of plant Ca2+ channels: a signalling mechanism in polar growth, hormone transduction, stress signalling, and hypothetically mechanotransduction. Plant Physiol 135:702–708

    PubMed  CAS  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    PubMed  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    PubMed  CAS  Google Scholar 

  • Munns R, James RA, Läuchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57:1025–1043

    PubMed  CAS  Google Scholar 

  • Muto S, Izawa S, Miyachi S (1982) Light-induced Ca2+ uptake by intact chloroplasts. FEBS Lett 139:250–254

    CAS  Google Scholar 

  • Mylona P, Pawlowski K, Bisseling T (1995) Symbiotic nitrogen fixation. Plant Cell 7:869–885

    PubMed  CAS  Google Scholar 

  • Nakata M, Yuasa T, Takahasi Y, Sarahmi I (2009) Plant Signal Behav 4:372–374

    PubMed  CAS  Google Scholar 

  • Navazio L, Moscatiello R, Genre A, Novero M, Baldan B et al (2007) A diffusible signal from arbuscular mycorrhizal fungi elicits a transient cytosolic calcium elevation in host plant cells. Plant Physiol 144:673–681

    PubMed  CAS  Google Scholar 

  • Nomura H, Komori T, Kobori M, Nakahira Y, Shiina T (2008) Evidence for chloroplast control of external Ca2+-induced cytosolic Ca2+ transients and stomatal closure. Plant J 53:988–998

    PubMed  CAS  Google Scholar 

  • Nouairi I, Ammar WB, Yousef NB, Daoud DBM, Ghorbal NH, Zarrouk M (2006) Comparative study of cadmium effects on membrane lipid composition of Brassica juncea and Brassica napus leaves. Plant Sci 170:511–519

    CAS  Google Scholar 

  • Oldroyd GED, Downie JA (2006) Nuclear calcium changes at the core of symbiosis signalling. Curr Opin Plant Biol 9:351–357

    PubMed  CAS  Google Scholar 

  • Oldroyd GED, Downie JA (2008) Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu Rev Plant Biol 59:519–546

    PubMed  CAS  Google Scholar 

  • Opaskornkul C, Lindberg S, Tillberg J-E (1999) Effects of ABA on the distribution of sucrose and protons across the plasmalemma of pea mesophyll protoplasts. - Suggesting a sucrose/proton symport. J. Plant Physiol 154:447–453

    CAS  Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of all plant root endosymbiosis. Nat Rev Microbiol 6:765–777

    Google Scholar 

  • Pauly N, Knight MR, Thuleau P, van der Luit AH, Moreau M, Trewavas AJ, Ranjeva R, Mazars C (2000) Control of free calcium in plant cell nuclei. Nature 405:754–755

    PubMed  CAS  Google Scholar 

  • Pauly N, Knight MR, Thuleau P, Graziana A, Muto S, Ranjeva R, Mazars C (2001) The nucleus together with the cytosol generates patterns of specific cellular calcium signatures in tobacco suspension culture cells. Cell Calcium 30:413–421

    PubMed  CAS  Google Scholar 

  • Pei ZM, Murata Y, Benning G, Thomine S, Klusener B, Allen GJ, Grill E, Schroeder JI (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406:731–734

    PubMed  CAS  Google Scholar 

  • Peiter E, Maathuis FJM, Mills LN, Knight H, Pelloux J et al (2005) The vacuolar Ca2+-activated channel TPC1 regulates germination and stomatal movement. Nature 434:404–408

    PubMed  CAS  Google Scholar 

  • Perera IY, Hung C-Y, Moore CD, Stevenson-Paulik J, Boss WF (2008) Transgenic Arabidopsis plants expressing the type 1 inositol 5-phosphatase exhibit increased drought tolerance and altered abscisic acid signalling. Plant Cell 20:2876–2893

    PubMed  CAS  Google Scholar 

  • Perfus-Barbeoch L, Leonhardt N, Vavasseur A, Forestier C (2002) Heavy metal toxicity: Cadmium permeates through calcium channels and disturbs the plant water status. Plant J 32:539–548

    PubMed  CAS  Google Scholar 

  • Plieth C (1999) Temperature sensing by plants: calcium-permeable channels as primary sensors – a model. J Membr Biol 172:121–127

    PubMed  CAS  Google Scholar 

  • Plieth C (2001) Plant calcium signalling and monitoring: pros and cons and recent, experimental approaches. Protoplasma 218:1–23

    PubMed  CAS  Google Scholar 

  • Plieth C, Hansen UP, Knight H, Knight MR (1999) Temperature sensing by plants: the primary characteristics of signal perception and calcium response. Plant J 18:491–497

    PubMed  CAS  Google Scholar 

  • Polevoi V, Sinyutina NF, Salamatoma TS, Inge-Vechtomova NI, Tankelyun OV, Sharova EI, Shishova MF (1996) Mechanism of auxin action: second messengers. In: Smith AR et al (eds) Plant hormone signal perception and transduction. Kluwer Academic Publishers, Amsterdam, pp 223–231. ISBN 0-7923-3768-9

    Google Scholar 

  • Poovaiah BW, Reddy ASN (1987) Calcium messenger system in plants. CRC Crit Rev Plant Sci 6:1–46

    Google Scholar 

  • Qi Z, Stephens NR, Spalding EP (2006) Calcium entry mediated by GLR3.3, an Arabidopsis glutamate receptor with a broad agonist profile. Plant Physiol 142:963–971

    PubMed  CAS  Google Scholar 

  • Quartacci MF, Cosi E, Navari-Izzo F (2001) Lipids and NADPH-dependent superoxide production in plasma membrane vesicles from roots of wheat grown under copper deficiency or excess. J Exp Bot 52:77–84

    PubMed  CAS  Google Scholar 

  • Rahman H, Sabreen S, Alam S, Kawai S (2005) Effect of nickel on growth and composition of metal micronutrients in barley plants grown in nutrient solution. J Plant Nutr 28:393–404

    CAS  Google Scholar 

  • Raven JA, Edwards D (2001) Roots: evolutionary origins and biogeochemical significance. J Exp Bot 52:381–401

    PubMed  CAS  Google Scholar 

  • Reddy ASN (2001) Calcium: silver bullet in signalling. Plant Sci 160:381–404

    PubMed  CAS  Google Scholar 

  • Reiser V, Raitt DC, Saito H (2003) Yeast osmosensor Sln1 and plant cytokinin receptor Cre1 respond to changes in turgor pressure. J Cell Biol 161:1035–1040

    PubMed  CAS  Google Scholar 

  • Rengel Z, Zhang W-H (2003) Role of dynamics of intracellular calcium in aluminium-toxicity syndrome. New Phytol 159:295–314

    CAS  Google Scholar 

  • Rentel M, Knight MR (2004) Oxidative stress-induced calcium signalling in Arabidopsis. Plant Physiol 135:1471–1479

    PubMed  CAS  Google Scholar 

  • Rhoads DM, Umbach AL, Subbaiah CC, Siedow JN (2006) Mitochondrial ROS: contribution to oxidative stress and inter-organellar signalling. Plant Physiol 141:357–366

    PubMed  CAS  Google Scholar 

  • Rizutto R, Marchi S, Bonora M, Aguiari P, Bononi A, De Stefani D et al (2009) Ca2+ transfer from the ER to mitochondria: when, how and why. Biochem Biophys Acta 1787:1342–1351

    Google Scholar 

  • Rodriguez-Concepcion M, Yalovsky S, Zik M, Fromm H, Gruissem W (1999) The prenylation status of a novel plant calmodulin directs plasma membrane or nuclear localization of the protein. EMBO J 18:1996–2007

    PubMed  CAS  Google Scholar 

  • Rodríguez-Navarro A, Rubio F (2006) High-affinity potassium and sodium transport systems in plants. J Exp Bot 57:1149–1160

    PubMed  Google Scholar 

  • Rodriguez-Serrano M, Romero-Puertas MC, Pazmino DM, Testillano PS, Risueno MC, del Rio LA, Sandalio LM (2009) Cellular response of pea plants to cadmium toxicity: cross talk between reactive oxygen species, nitric oxide, and calcium. Plant Physiol 150:229–243

    PubMed  CAS  Google Scholar 

  • Ryan PR, DiTomaso JM, Kochian LV (1993) Aluminum toxicity in roots: an investigation of spatial sensitivity and the role of the root cap. J Exp Bot 44:437–446

    CAS  Google Scholar 

  • Sai J, Johnson CH (2002) Dark-stimulated calcium ion fluxes in the chloroplast stroma and cytosol. Plant Cell 14:1279–1291

    PubMed  CAS  Google Scholar 

  • Sanders D, Pelloux J, Brownlee C, Harper JF (2002) Calcium at the crossroads of signalling. Plant Cell 14:S401–S417

    PubMed  CAS  Google Scholar 

  • Sauter M (2000) Rice in deep water: “How to take heed against a sea of troubles”. Naturwissenschaften 87:289–303

    PubMed  CAS  Google Scholar 

  • Schiott M, Palmgren MG (2005) Two plant Ca2+ pumps expressed in stomatal guard cells show opposite expression pattern during cold stress. Physiol Plant 124:278–283

    CAS  Google Scholar 

  • Sebastiani L, Lindberg S, Vitagliano C (1999) Cytoplasmic free calcium dynamics in single tomato (Lycopersicon esculentum L) protoplasts subjected to chilling temperatures. Physiol Plant 105:239–245

    CAS  Google Scholar 

  • Sedbrook JC, Kronebusch PJ, Borisy GG, Trewavas AJ, Masson PH (1996) Transgenic AEQUORIN reveals organ-specific cytosolic Ca2+ responses to anoxia in Arabidopsis thaliana seedlings. Plant Physiol 111:243–257

    PubMed  CAS  Google Scholar 

  • Seigneurin-Berny D, Gravot A, Auroy P, Mazard C, Kraut A et al (2006) HMA1, a new Cu-ATPase of the chloroplast envelope, is essential for growth under adverse light conditions. J Biol Chem 281:2882–2892

    PubMed  CAS  Google Scholar 

  • Shabala S, Newman I (1999) Light-induced changes in hydrogen, calcium, potassium and chloride ion fluxes and concentrations from the mesophyll and epidermal tissues of bean leaves. Understanding the ionic basis of light-induced bioelectrogenesis. Plant Physiol 119:1115–1124

    PubMed  CAS  Google Scholar 

  • Shabala L, Cuin TA, Newman IA, Shabala S (2005) Salinity-induced ion flux patterns from the excised roots of Arabidopsis sos mutants. Planta 222:1041–1050

    PubMed  CAS  Google Scholar 

  • Sharma P, Deswal R (2004) Detection and characterization of calcineurin-like activity in Brassica juncea and its activation by low temperature. Plant Physiol Biochem 42:579–584

    PubMed  CAS  Google Scholar 

  • Sharma SS, Dietz KJ (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14:43–50

    PubMed  CAS  Google Scholar 

  • Shi B, Haug A (1988) Uptake of aluminium by lipid vesicles. Toxicol Environ Chem 17:337–349

    CAS  Google Scholar 

  • Shigaki T, Hirschi KD (2006) Diverse functions and molecular properties emerging for CAX cation/H+ exchangers in plants. Plant Biol 8:419–429

    PubMed  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signalling pathways. Curr Opin Plant Biol 3:217–223

    PubMed  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene ­networks involved in drought stress response and ­tolerance. J Exp Bot 58:221–227

    PubMed  CAS  Google Scholar 

  • Shishova M, Lindberg S (1999) Auxin-induced cytosol acidification in wheat leaf protoplasts depends on external concentration of Ca2+. J Plant Physiol 155:190–196

    CAS  Google Scholar 

  • Shishova M, Lindberg S (2004) Auxin induces rapid increase of Ca2+ concentration in the cytosol of wheat leaf protoplasts. J Plant Physiol 161:937–945

    PubMed  CAS  Google Scholar 

  • Shishova M, Lindberg S (2010) A new perspective on auxin perception. J Plant Physiol 167:417–422

    PubMed  CAS  Google Scholar 

  • Shishova M, Yemelyanov V, Rudashevskaya E, Lindberg S (2007) A shift in sensitivity to auxin within development of maize seedlings. J Plant Physiol 164:1323–1330

    PubMed  CAS  Google Scholar 

  • Sprent JI (2006) Evolving ideas of legume evolutional diversity: a taxonomic perspective on occurrence of nodulation. New Phytol 174:11–25

    Google Scholar 

  • Staxen II, Pical C, Montgomery LT, Gray JE, Hetherington AM, McAinsh MR (1999) Abscisic acid induces oscillations in guard-cell cytosolic free calcium that involve phosphoinositide-specific phospholipase C. Proc Natl Acad Sci USA 96:1779–1784

    PubMed  CAS  Google Scholar 

  • Steponkus PL, Lynch DV (1989) The behavior of large unilamellar vesicles of rye plasma membrane lipids during freeze/thaw-induced osmotic excursions. Cryo Lett 10:43–50

    Google Scholar 

  • Subbaiah CC (2009) Ionic loops and rebounds: oxygen-deprivation signalling in plants. In: Baluška F, Mancuso S (eds) Signalling in plants. Springer, Berlin, pp 195–207

    Google Scholar 

  • Subbaiah C, Bush DS, Sachs M (1994a) Elevation of cytosolic calcium precedes anoxic gene expression in maize suspension-cultured cells. Plant Cell 6:1747–1762

    PubMed  CAS  Google Scholar 

  • Subbaiah C, Zhang J, Sachs M (1994b) Involvement of intracellular calcium in anaerobic gene expression and survival of maize seedlings. Plant Physiol 105:369–376

    PubMed  CAS  Google Scholar 

  • Subbaiah CC, Bush DS, Sachs MM (1998) Mitochondrial contribution to the anoxic Ca2+ signal in maize suspension-cultured cells. Plant Physiol 118:759–771

    PubMed  CAS  Google Scholar 

  • Subbarao GV, Ito O, Berry WL, Wheeler RM (2003) Sodium – a functional plant nutrient. Crit Rev Plant Sci 22:391–416

    Google Scholar 

  • Sun DY, Li HB, Cheng G (1994) Extracellular calmodulin accelerates the proliferation of suspension-cultured cells of Angelica dahurica. Plant Sci 99:1–8

    CAS  Google Scholar 

  • Sun QP, Guo Y, Sun Y, Sun DY, Wang XJ (2006) Influx of extracellular Ca2+ involved in jasmonic-acid-induced elevation of [Ca 2+cyt ] and JR1 expression in Arabdopsis thaliana. J Plant Res 119:343–350

    PubMed  CAS  Google Scholar 

  • Tähtiharju S, Sangwan V, Monroy AF, Dhindsa RS, Borg M (1997) The induction of kin genes in cold-acclimating Arabidopsis thaliana. Evidence of a role for calcium. Planta 203:442–447

    PubMed  Google Scholar 

  • Taiz L, Zeiger E (2006) Plant physiology, 4th edn. Sinauer Associates Inc. Publishers, Sunderland, MA, p 694

    Google Scholar 

  • Takahashi H, Scott TK, Suge H (1992) Stimulation of root elongation and curvature by calcium. Plant Physiol 98:246–252

    PubMed  CAS  Google Scholar 

  • Tamas L, Dudikova J, Durcekova K, Haluskova L, Huttova J, Mistrik I, Ollé M (2008) Alterations of the gene expression, lipid peroxidation, proline and thiol content along the barley root exposed to cadmium. J Plant Physiol 165:1193–1203

    PubMed  CAS  Google Scholar 

  • Tamura T, Hara K, Yamaguchi Y, Koizumi N, Sano H (2003) Osmotic stress tolerance of transgenic tobacco expressing a gene encoding a membrane-located receptor-like protein from tobacco plants. Plant Physiol 131:454–462

    PubMed  CAS  Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527

    PubMed  CAS  Google Scholar 

  • Tiwari BS, Belenghi A, Levine A (2002) Oxidative stress increased respiration and generation of reactive oxygen species, resulting in ATP depletion, opening of mitochondrial permeability transition, and programmed cell death. Plant Physiol 128:1271–1281

    PubMed  CAS  Google Scholar 

  • Tracy FE, Gilliham M, Dodd AN, Webb AAR, Tester M (2008) Nacl-induced changes in cytosolic free Ca2+ in Arabidopsis thaliana are heterogeneous and modified by external ionic composition. Plant Cell Environ 31: 1063–1073

    PubMed  CAS  Google Scholar 

  • Tran LS, Urao T, Qin F, Maruyama K, Kakimoto T, Shinozaki K, Yamaguchi-Shinozaki K (2007) Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis. Proc Natl Acad Sci USA 104:20623–20628

    PubMed  CAS  Google Scholar 

  • Tsuji H, Nakazono M, Saisho D, Tsutsumi N, Hirai A (2000) Transcript levels of the nuclear-encoded respiratory genes in rice decrease by oxygen deprivation: evidence for involvement of calcium in expression of the alternative oxidase 1a gene. FEBS Lett 471:201–204

    PubMed  CAS  Google Scholar 

  • Tuteja N (2007) Mechanisms of high salinity tolerance in plants. Methods Enzymol 428:419–438

    PubMed  CAS  Google Scholar 

  • Tuteja N, Mahajan S (2007) Calcium signalling network in plants. Plant Signal Behav 2:79–85

    PubMed  Google Scholar 

  • Tuteja N, Sopory SK (2008) Chemical signalling under abiotic stress environment in plants. Plant Signal Behav 3:525–536

    PubMed  Google Scholar 

  • Uemura M, Joseph R-A, Steponkus P-L (1995) Cold acclimation of Arabidopsis thaliana. Effect on plasma membrane lipid composition and freeze-induced lesions. Plant Physiol 109:15–30

    PubMed  CAS  Google Scholar 

  • Uemura M, Tominaga Y, Nakagawara C, Shigematsu S, Minami A, Kawamura Y (2006) Responses of the plasma membrane to low temperatures. Physiol Plant 126:81–89

    CAS  Google Scholar 

  • Unyayar S, Celik A, Cekic OF, Gozel A (2006) Cadmium-induced genotoxicity, cytotoxicity, and lipid peroxidation in Allium sativum and Vicia faba. Mutagenesis 21:77–81

    PubMed  CAS  Google Scholar 

  • Urao T, Yakubov B, Satoh R, Yamaguchi-Shinozaki K, Seki M, Hirayama T, Shinozaki K (1999) A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor. Plant Cell 11:1743–1754

    PubMed  CAS  Google Scholar 

  • Vallee BL, Ulmer DD (1972) The biochemical effects of mercury, cadmium and lead. Annu Rev Biochem 41:91–128

    PubMed  CAS  Google Scholar 

  • van der Luit AH, Olivari C, Haley A, Knight MR, Trewavas AJ (1999) Distinct calcium signalling pathways regulate calmodulin gene expression in tobacco. Plant Physiol 121:705–714

    Google Scholar 

  • Vanderbeld B, Snedden WA (2007) Developmental and stimulus-induced expression patterns of Arabidopsis calmodulin-like genes CML37, CML38, CML39. Plant Mol Biol 64:683–697

    PubMed  CAS  Google Scholar 

  • Vangronsveld J, Clijsters H (1994) Toxic effects of metals. In: Farago M (ed) Plants and the chemical elements. VCH Verlagsgesellshaft, Weinheim, pp 149–177

    Google Scholar 

  • Vartapetian BB, Jackson MB (1997) Plant adaptations to anaerobic stress. Ann Bot 79(Suppl A):3–20

    CAS  Google Scholar 

  • Vinit-Dunand F, Epron D, Alaoui-Sossé B, Badot P-M (2002) Effects of copper on growth and on photosynthesis of mature and expanding leaves in cucumber plants. Plant Sci 163:53–58

    CAS  Google Scholar 

  • Viswanathan C, Zhu J, Zhu J-K (2006) Gene regulation during cold acclimation in plants. Physiol Plant 126:52–61

    Google Scholar 

  • Wang X (2001) Plant phospholipases. Annu Rev Plant Physiol Mol Biol 52:211–231

    CAS  Google Scholar 

  • Watashiki MK, Trewavas AJ, Parton RM (2004) Fluctuations in pollen tube tip-focused calcium gradient are not reflected in nuclear calcium level: a comparative analysis using recombinant yellow camelion reporter. Sexual Plant Reprod 17:125–130

    Google Scholar 

  • Weini S, Held K, Schlückling K, Steinhorst L, Kuhlgert S, Hippler M, Kudla J (2008) A plastid protein crucial for Ca2+-regulated stomatal responses. New Phytol 179:675–686

    Google Scholar 

  • White PJ, Broadley MR (2003) Calcium in plants. Ann Bot 92:487–511

    PubMed  CAS  Google Scholar 

  • Williams RJP (2006) The evolution of calcium biochemistry. Biochem Biophys Acta 1763:1139–1146

    PubMed  CAS  Google Scholar 

  • Williams LE, Mills RF (2005) P(1B)-ATPases: an ancient family of transition metal pumps with diverse functions in plants. Trends Plant Sci 10:491–502

    PubMed  CAS  Google Scholar 

  • Wohlbach DJ, Quirino BF, Sussmand MR (2008) Analysis of the Arabidopsis histidine kinase ATHK1 reveals a connection between vegetative osmotic stress sensing and seed maturation. Plant Cell 20:1101–1117

    PubMed  CAS  Google Scholar 

  • Wymer CL, Bibikova TN, Gilroy S (1997) Cytoplasmic free calcium distributions during the development of root hairs of Arabidopsis thaliana. Plant J 12:427–439

    PubMed  CAS  Google Scholar 

  • Xiong TC, Jauneau A, Ranjeva R, Mazars C (2004) Isolated plant nuclei as mechanical and thermal sensors involved in calcium signalling. Plant J 40:12–21

    PubMed  CAS  Google Scholar 

  • Xiong TC, Bourque S, Lecourieux D, Amelot N, Grat S, Briere C, Mazars C, Pugin A, Ranjeva R (2006) Calcium signalling in plant cell organelles delimited by a double membrane. Biochim Biophys Acta 1763:1209–2015

    PubMed  CAS  Google Scholar 

  • Xiong TC, Coursol S, Grat S, Ranjeva R, Mazars C (2008) Sphingolipid metabolites selectively elicit increase in nuclear calcium concentration in cell suspension cultures and in isolated nuclei of tobacco. Cell Calcium 43:29–37

    PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803

    PubMed  CAS  Google Scholar 

  • Yamazaki T, Kawamura Y, Minami A, Uemura M (2008) Calcium-dependent freezing tolerance in Arabidopsis involves membrane resealing via synaptotagmin SYT1. Plant Cell 20:3389–3404

    PubMed  CAS  Google Scholar 

  • Yang T, Poovaiah BW (2002) A calmodulin-binding/CGCG box DNA-binding protein family involved in multiple signalling pathways in plants. J Biol Chem 277:45049–45058

    PubMed  CAS  Google Scholar 

  • Yemelyanov V, Shishova M, Chirkova T, Lindberg S (2011) Anoxia-induced elevation of cytosolic Ca2+ concentration depends on different Ca2+ sources in rice and wheat protoplasts. Planta. doi:10.1007/s00425-011-1396-x

  • Zhang JZ, Creelman RA, Zhu JK (2004) From laboratory to field. Using information from Arabidopsis to engineer salt, cold, and drought tolerance in crops. Plant Physiol 135:615–621

    PubMed  CAS  Google Scholar 

  • Zhao MG, Tian QY, Zhang WH (2007) Ethylene activates a plasma membrane Ca(2+)-permeable channel in tobacco suspension cells. New Phytol 174:507–515

    PubMed  CAS  Google Scholar 

  • Zhao J, Barkla BJ, Marshall J, Pittman JK, Hirschi KD (2008) The Arabidopsis cax3 mutants display altered salt tolerance, pH sensitivity and reduced plasma membrane H+-ATPase activity. Planta 227: 659–669

    PubMed  CAS  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    PubMed  CAS  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    PubMed  CAS  Google Scholar 

  • Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445

    PubMed  CAS  Google Scholar 

  • Zhu J, Dong CH, Zhu JK (2007) Interplay between cold-responsive gene regulation, metabolism and RNA processing during plant cold acclimation. Curr Opin Plant Biol 10:290–295

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvia Lindberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lindberg, S., Kader, M.A., Yemelyanov, V. (2012). Calcium Signalling in Plant Cells Under Environmental Stress. In: Ahmad, P., Prasad, M. (eds) Environmental Adaptations and Stress Tolerance of Plants in the Era of Climate Change. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0815-4_15

Download citation

Publish with us

Policies and ethics