Skip to main content

Modulation of T-Cell Mediated Immunity by Cytomegalovirus

  • Chapter
  • First Online:
Control of Innate and Adaptive Immune Responses during Infectious Diseases

Abstract

The herpesviruses have coevolved with their vertebrate hosts for over one hundred million years (McGeoch et al. 2000), resulting in a finely tuned equilibrium with the immune system. Consequently, all herpesviruses employ a multitude of strategies to modulate the host immune response, facilitating the establishment of lifelong latency and/or persistence in the face of a robust innate and adaptive immune response. Cytomegalovirus (CMV, a β-herpesvirus) is the largest of the herpesviruses, with a genome of ∼230 kB in size encoding >200 open reading frames (orfs). Approximately ∼60% of the encoded genes are not essential for replication of virus in tissue culture where there is no selective pressure from the host immune system and are predicted to perform immunomodulatory functions and facilitate establishment of latency (Murphy et al. 2003; Brocchieri et al. 2005). CMV directly targets dendritic cells (DC) and exploits the DC’s crucial role in the regulation of innate and adaptive anti-viral immune responses to promote replication and establish latency while preventing host pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahn, K., A. Gruhler, et al. (1997). “The ER-luminal domain of the HCMV glycoprotein US6 inhibits peptide translocation by TAP.” Immunity 6(5): 613–21.

    PubMed  CAS  Google Scholar 

  • Andoniou, C. E., S. L. van Dommelen, et al. (2005). “Interaction between conventional dendritic cells and natural killer cells is integral to the activation of effective antiviral immunity.” Nat Immunol 6(10): 1011–9.

    PubMed  CAS  Google Scholar 

  • Andoniou, C. E., D. M. Andrews, et al. (2006). “Natural killer cells in viral infection: more than just killers.” Immunol Rev 214: 239–50.

    PubMed  CAS  Google Scholar 

  • Andrews, D. M., C. E. Andoniou, et al. (2001). “Infection of dendritic cells by murine cytomegalovirus induces functional paralysis.” Nat Immunol 2(11): 1077–84.

    PubMed  CAS  Google Scholar 

  • Andrews, D. M., C. E. Andoniou, et al. (2005). “Cross-talk between dendritic cells and natural killer cells in viral infection.” Mol Immunol 42(4): 547–55.

    PubMed  CAS  Google Scholar 

  • Arens, R., P. Wang, et al. (2008). “Cutting edge: murine cytomegalovirus induces a polyfunctional CD4 T cell response.” J Immunol 180(10): 6472–6.

    PubMed  CAS  Google Scholar 

  • Arens, R., A. Loewendorf, et al. (2011). Differential B7-CD28 costimulatory requirements for stable and inflationary MCMV-specific memory CD8 T cell populations. J Immunol 186, 3874–81.

    Google Scholar 

  • Arens, R., A. Loewendorf, et al. (2011). B7-mediated costimulation of CD4 T cells constrains cytomegalovirus persistence. J Virol 85, 390–6.

    PubMed  CAS  Google Scholar 

  • Barber, D. L., E. J. Wherry, et al. (2006). “Restoring function in exhausted CD8 T cells during chronic viral infection.” Nature 439(7077): 682–7.

    PubMed  CAS  Google Scholar 

  • Beck, K., U. Meyer-Konig, et al. (2003). “Human cytomegalovirus impairs dendritic cell function: a novel mechanism of human cytomegalovirus immune escape.” Eur J Immunol 33(6): 1528–38.

    PubMed  CAS  Google Scholar 

  • Benedict, C. A., K. D. Butrovich, et al. (1999). “Cutting edge: a novel viral TNF receptor superfamily member in virulent strains of human cytomegalovirus.” J Immunol 162(12): 6967–70.

    PubMed  CAS  Google Scholar 

  • Benedict, C. A., A. Loewendorf, et al. (2008). “Dendritic cell programming by cytomegalovirus stunts naive T cell responses via the PD-L1/PD-1 pathway.” J Immunol 180(7): 4836–47.

    PubMed  CAS  Google Scholar 

  • Biron, C. A., K. S. Byron, et al. (1989). “Severe herpesvirus infections in an adolescent without natural killer cells.” N Engl J Med 320(26): 1731–5.

    PubMed  CAS  Google Scholar 

  • Blocki, F. A., S. Radhakrishnan, et al. (2006). “Induction of a gene expression program in dendritic cells with a cross-linking IgM antibody to the co-stimulatory molecule B7-DC.” Faseb J 20(13): 2408–10.

    PubMed  CAS  Google Scholar 

  • Boni, C., P. Fisicaro, et al. (2007). “Characterization of hepatitis B virus (HBV)-specific T-cell dysfunction in chronic HBV infection.” J Virol 81(8): 4215–25.

    PubMed  CAS  Google Scholar 

  • Brocchieri, L., T. N. Kledal, et al. (2005). “Predicting coding potential from genome sequence: application to betaherpesviruses infecting rats and mice.” J Virol 79(12): 7570–96.

    PubMed  CAS  Google Scholar 

  • Bukowski, J. F., B. A. Woda, et al. (1984). “Pathogenesis of murine cytomegalovirus infection in natural killer cell-depleted mice.” J Virol 52(1): 119–28.

    PubMed  CAS  Google Scholar 

  • Chang, W. L., N. Baumgarth, et al. (2004). “Human cytomegalovirus-encoded interleukin-10 homolog inhibits maturation of dendritic cells and alters their functionality.” J Virol 78(16): 8720–31.

    PubMed  CAS  Google Scholar 

  • Cheng, J., Q. Ke, et al. (2009). “Cytomegalovirus infection causes an increase of arterial blood pressure.” PLoS Pathog 5(5): e1000427.

    PubMed  Google Scholar 

  • Cheung, A. K., D. J. Gottlieb, et al. (2009). “The role of the human cytomegalovirus UL111A gene in downregulating CD4+ T cell recognition of latently infected cells: implications for virus elimination during latency.” Blood 114(19): 4128–37

    PubMed  CAS  Google Scholar 

  • Cresswell, P., A. L. Ackerman, et al. (2005). “Mechanisms of MHC class I-restricted antigen processing and cross-presentation.” Immunol Rev 207: 145–57.

    PubMed  CAS  Google Scholar 

  • Davison, A. J., A. Dolan, et al. (2003). “The human cytomegalovirus genome revisited: comparison with the chimpanzee cytomegalovirus genome.” J Gen Virol 84(Pt 1): 17–28.

    PubMed  CAS  Google Scholar 

  • Dong, H., S. E. Strome, et al. (2002). “Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion.” Nat Med 8(8): 793–800.

    PubMed  CAS  Google Scholar 

  • French, A. R., J. T. Pingel, et al. (2004). “Escape of mutant double-stranded DNA virus from innate immune control.” Immunity 20(6): 747–56.

    PubMed  CAS  Google Scholar 

  • Gaytant, M. A., E. A. Steegers, et al. (2002). “Congenital cytomegalovirus infection: review of the epidemiology and outcome.” Obstet Gynecol Surv 57(4): 245–56.

    PubMed  Google Scholar 

  • Gold, M. C., M. W. Munks, et al. (2002). “The murine cytomegalovirus immunomodulatory gene m152 prevents recognition of infected cells by M45-specific CTL but does not alter the immunodominance of the M45-specific CD8 T cell response in vivo.” J Immunol 169(1): 359–65.

    PubMed  CAS  Google Scholar 

  • Gold, M. C., M. W. Munks, et al. (2004). “Murine cytomegalovirus interference with antigen presentation has little effect on the size or the effector memory phenotype of the CD8 T cell response.” J Immunol 172(11): 6944–53.

    PubMed  CAS  Google Scholar 

  • Greenberg, P. D. and S. R. Riddell (1999). “Deficient cellular immunity--finding and fixing the defects.” Science 285(5427): 546–51.

    PubMed  CAS  Google Scholar 

  • Greenwald, R. J., G. J. Freeman, et al. (2005). “The B7 family revisited.” Annu Rev Immunol 23: 515–48.

    PubMed  Google Scholar 

  • Guermonprez, P. and S. Amigorena (2005). “Pathways for antigen cross presentation.” Springer Semin Immunopathol 26(3): 257–71.

    PubMed  Google Scholar 

  • Hegde, N. R., M. S. Chevalier, et al. (2003). “Viral inhibition of MHC class II antigen presentation.” Trends Immunol 24(5): 278–85.

    PubMed  CAS  Google Scholar 

  • Hertel, L., V. G. Lacaille, et al. (2003). “Susceptibility of immature and mature Langerhans cell-type dendritic cells to infection and immunomodulation by human cytomegalovirus.” J Virol 77(13): 7563–74.

    PubMed  CAS  Google Scholar 

  • Holtappels, R., V. Bohm, et al. (2008). “CD8 T-cell-based immunotherapy of cytomegalovirus infection: “proof of concept” provided by the murine model.” Med Microbiol Immunol 197(2): 125–34.

    PubMed  Google Scholar 

  • Janssen, E. M., E. E. Lemmens, et al. (2003). “CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes.” Nature 421(6925): 852–6.

    PubMed  CAS  Google Scholar 

  • Jones, T. R. and L. Sun (1997). “Human cytomegalovirus US2 destabilizes major histocompatibility complex class I heavy chains.” J Virol 71(4): 2970–9.

    PubMed  CAS  Google Scholar 

  • Jones, T. R., E. J. Wiertz, et al. (1996). “Human cytomegalovirus US3 impairs transport and maturation of major histocompatibility complex class I heavy chains.” Proc Natl Acad Sci USA 93(21): 11327–33.

    PubMed  CAS  Google Scholar 

  • Jonjic, S., W. Mutter, et al. (1989). “Site-restricted persistent cytomegalovirus infection after selective long-term depletion of CD4+ T lymphocytes.” J.Exp.Med. 169: 1199–1212.

    PubMed  CAS  Google Scholar 

  • Jonjic, S., I. Pavic, et al. (1990). “Efficacious Control of Cytomegalovirus Infection after Long-Term Depletion of CD8+ T Lymphocytes.” J.Virol. 64(11): 5457–64.

    PubMed  CAS  Google Scholar 

  • Jonjic, S., I. Pavic, et al. (1994). “Antibodies are not essential for the resolution of primary cytomegalovirus infection but limit dissemination of recurrent virus.” J Exp Med 179(5): 1713–7.

    PubMed  CAS  Google Scholar 

  • Karrer, U., S. Sierro, et al. (2003). “Memory inflation: continuous accumulation of antiviral CD8+ T cells over time.” J Immunol 170(4): 2022–9.

    PubMed  CAS  Google Scholar 

  • Kavanagh, D. G., M. C. Gold, et al. (2001). “The multiple immune-evasion genes of murine cytomegalovirus are not redundant: m4 and m152 inhibit antigen presentation in a complementary and cooperative fashion.” J Exp Med 194(7): 967–78.

    PubMed  CAS  Google Scholar 

  • Keir, M. E., M. J. Butte, et al. (2008). “PD-1 and its ligands in tolerance and immunity.” Annu Rev Immunol 26: 677–704.

    PubMed  CAS  Google Scholar 

  • Kessler, T., M. Reich, et al. (2008). “Human cytomegalovirus infection interferes with major ­histocompatibility complex type II maturation and endocytic proteases in dendritic cells at multiple levels.” J Gen Virol 89(Pt 10): 2427–36.

    PubMed  CAS  Google Scholar 

  • Kielczewska, A., M. Pyzik, et al. (2009). “Ly49P recognition of cytomegalovirus-infected cells expressing H2-Dk and CMV-encoded m04 correlates with the NK cell antiviral response.” J Exp Med 206(3): 515–23.

    PubMed  CAS  Google Scholar 

  • Kleijnen, M. F., J. B. Huppa, et al. (1997). “A mouse cytomegalovirus glycoprotein, gp34, forms a complex with folded class I MHC molecules in the ER which is not retained but is transported to the cell surface.” Embo J 16(4): 685–94.

    PubMed  CAS  Google Scholar 

  • Kuipers, H., F. Muskens, et al. (2006). “Contribution of the PD-1 ligands/PD-1 signaling pathway to dendritic cell-mediated CD4+ T cell activation.” Eur J Immunol 36(9): 2472–82.

    PubMed  CAS  Google Scholar 

  • Latchman, Y., C. R. Wood, et al. (2001). “PD-L2 is a second ligand for PD-1 and inhibits T cell activation.” Nat Immunol 2(3): 261–8.

    PubMed  CAS  Google Scholar 

  • Lee, S. O., S. Hwang, et al. (2005). “Functional dissection of HCMV US11 in mediating the ­degradation of MHC class I molecules.” Biochem Biophys Res Commun 330(4): 1262–7.

    PubMed  CAS  Google Scholar 

  • Lee, A. W., L. Hertel, et al. (2006). “Human cytomegalovirus alters localization of MHC class II and dendrite morphology in mature Langerhans cells.” J Immunol 177(6): 3960–71.

    PubMed  CAS  Google Scholar 

  • Lockridge, K. M., S. S. Zhou, et al. (2000). “Primate cytomegaloviruses encode and express an IL-10-like protein.” Virology 268(2): 272–80.

    PubMed  CAS  Google Scholar 

  • Loewendorf, A., C. Kruger, et al. (2004). “Identification of a mouse cytomegalovirus gene selectively targeting CD86 expression on antigen-presenting cells.” J Virol 78(23): 13062–71.

    PubMed  CAS  Google Scholar 

  • Lu, X., A. K. Pinto, et al. (2006). “Murine cytomegalovirus interference with antigen presentation contributes to the inability of CD8 T cells to control virus in the salivary gland.” J Virol 80(8): 4200–2.

    PubMed  CAS  Google Scholar 

  • Lurain, N. S., K. S. Kapell, et al. (1999). “Human cytomegalovirus UL144 open reading frame: sequence hypervariability in low-passage clinical isolates.” J Virol 73(12): 10040–50.

    PubMed  CAS  Google Scholar 

  • Mathys, S., T. Schroeder, et al. (2003). “Dendritic cells under influence of mouse cytomegalovirus have a physiologic dual role: to initiate and to restrict T cell activation.” J Infect Dis 187(6): 988–99.

    PubMed  Google Scholar 

  • McGeoch, D. J., A. Dolan, et al. (2000). “Toward a comprehensive phylogeny for mammalian and avian herpesviruses.” J Virol 74(22): 10401–6.

    PubMed  CAS  Google Scholar 

  • McGregor, A., F. Liu, et al. (2004). “Molecular, biological, and in vivo characterization of the guinea pig cytomegalovirus (CMV) homologs of the human CMV matrix proteins pp71 (UL82) and pp65 (UL83).” J Virol 78(18): 9872–89.

    PubMed  CAS  Google Scholar 

  • Mellman, I. (2005). “Antigen processing and presentation by dendritic cells: cell biological mechanisms.” Adv Exp Med Biol 560: 63–7.

    PubMed  CAS  Google Scholar 

  • Michaelis, M., H. W. Doerr, et al. (2009). “Oncomodulation by human cytomegalovirus: evidence becomes stronger.” Med Microbiol Immunol 198(2): 79–81.

    PubMed  Google Scholar 

  • Miller-Kittrell, M. and T. E. Sparer (2009). “Feeling manipulated: cytomegalovirus immune manipulation.” Virol J 6: 4.

    PubMed  Google Scholar 

  • Mintern, J. D., E. J. Klemm, et al. (2006). “Viral interference with B7-1 costimulation: a new role for murine cytomegalovirus fc receptor-1.” J Immunol 177(12): 8422–31.

    PubMed  CAS  Google Scholar 

  • Moutaftsi, M., A. M. Mehl, et al. (2002). “Human cytomegalovirus inhibits maturation and impairs function of monocyte-derived dendritic cells.” Blood 99(8): 2913–21.

    PubMed  CAS  Google Scholar 

  • Muller, A., L. Schmitt, et al. (1998). “Paralysis of B7 co-stimulation through the effect of viral IL-10 on T cells as a mechanism of local tolerance induction.” Eur J Immunol 28(11): 3488–98.

    PubMed  CAS  Google Scholar 

  • Munks, M. W., K. S. Cho, et al. (2006). “Four distinct patterns of memory CD8 T cell responses to chronic murine cytomegalovirus infection.” J Immunol 177(1): 450–8.

    PubMed  CAS  Google Scholar 

  • Munks, M. W., A. K. Pinto, et al. (2007). “Viral interference with antigen presentation does not alter acute or chronic CD8 T cell immunodominance in murine cytomegalovirus infection.” J Immunol 178(11): 7235–41.

    PubMed  CAS  Google Scholar 

  • Murphy, E., D. Yu, et al. (2003). “Coding potential of laboratory and clinical strains of human cytomegalovirus.” Proc Natl Acad Sci USA 100(25): 14976–81.

    PubMed  CAS  Google Scholar 

  • Odeberg, J. and C. Soderberg-Naucler (2001). “Reduced expression of HLA class II molecules and Iinterleukin-10- and transforming growth factor beta1-independent suppression of T-cell proliferation in human cytomegalovirus-infected macrophage cultures.” J Virol 75(11): 5174–81.

    PubMed  CAS  Google Scholar 

  • Pawelec, G., A. Akbar, et al. (2005). “Human immunosenescence: is it infectious?” Immunol Rev 205: 257–68.

    PubMed  CAS  Google Scholar 

  • Petrovas, C., J. P. Casazza, et al. (2006). “PD-1 is a regulator of virus-specific CD8+ T cell survival in HIV infection.” J Exp Med 203(10): 2281–92.

    PubMed  CAS  Google Scholar 

  • Pinto, A. K., M. W. Munks, et al. (2006). “Coordinated function of murine cytomegalovirus genes completely inhibits CTL lysis.” J Immunol 177(5): 3225–34.

    PubMed  CAS  Google Scholar 

  • Pitcher, C. J., S. I. Hagen, et al. (2002). “Development and homeostasis of T cell memory in rhesus macaque.” J Immunol 168(1): 29–43.

    PubMed  CAS  Google Scholar 

  • Podlech, J., R. Holtappels, et al. (1998). “Reconstitution of CD8 T cells is essential for the ­prevention of multiple-organ cytomegalovirus histopathology after bone marrow transplantation.” J Gen Virol 79 ( Pt 9): 2099–104.

    PubMed  CAS  Google Scholar 

  • Powers, C. and K. Fruh (2008). “Rhesus CMV: an emerging animal model for human CMV.” Med Microbiol Immunol 197(2): 109–15.

    PubMed  Google Scholar 

  • Powers, C. J. and K. Fruh (2008). “Signal peptide-dependent inhibition of MHC class I heavy chain translation by rhesus cytomegalovirus.” PLoS Pathog 4(10): e1000150.

    PubMed  Google Scholar 

  • Raftery, M. J., M. Schwab, et al. (2001). “Targeting the function of mature dendritic cells by human cytomegalovirus: a multilayered viral defense strategy.” Immunity 15(6): 997–1009.

    PubMed  CAS  Google Scholar 

  • Raftery, M. J., D. Wieland, et al. (2004). “Shaping phenotype, function, and survival of dendritic cells by cytomegalovirus-encoded IL-10.” J Immunol 173(5): 3383–91.

    PubMed  CAS  Google Scholar 

  • Rawlinson, W. D., H. E. Farrell, et al. (1996). “Analysis of the complete DNA sequence of murine cytomegalovirus.” J Virol 70(12): 8833–49.

    PubMed  CAS  Google Scholar 

  • Reddehase, M. J., F. Weiland, et al. (1985). “Interstitial murine cytomegalovirus pneumonia after irradiation: characterization of cells that limit viral replication during established infection of the lungs.” J Virol 55(2): 264–73.

    PubMed  CAS  Google Scholar 

  • Rehm, A., A. Engelsberg, et al. (2002). “Human cytomegalovirus gene products US2 and US11 differ in their ability to attack major histocompatibility class I heavy chains in dendritic cells.” J Virol 76(10): 5043–50.

    PubMed  CAS  Google Scholar 

  • Riddell, S. R. and P. D. Greenberg (1997). “T cell therapy of human CMV and EBV infection in immunocompromised hosts.” Rev Med Virol 7(3): 181–192.

    PubMed  Google Scholar 

  • Robbins, S. H., G. Bessou, et al. (2007). “Natural killer cells promote early CD8 T cell responses against cytomegalovirus.” PLoS Pathog 3(8): e123.

    PubMed  Google Scholar 

  • Rolle, A. and J. Olweus (2009). “Dendritic cells in cytomegalovirus infection: viral evasion and host countermeasures.” Apmis 117(5–6): 413–26.

    PubMed  CAS  Google Scholar 

  • Rubin, R. H. (2001). “Cytomegalovirus in solid organ transplantation.” Transpl Infect Dis 3 Suppl 2: 1–5.

    CAS  Google Scholar 

  • Senechal, B., A. M. Boruchov, et al. (2004). “Infection of mature monocyte-derived dendritic cells with human cytomegalovirus inhibits stimulation of T-cell proliferation via the release of soluble CD83.” Blood 103(11): 4207–15.

    PubMed  CAS  Google Scholar 

  • Sharpe, A. H. (2009). “Mechanisms of costimulation.” Immunol Rev 229(1): 5–11.

    PubMed  CAS  Google Scholar 

  • Sierro, S., R. Rothkopf, et al. (2005). “Evolution of diverse antiviral CD8+ T cell populations after murine cytomegalovirus infection.” Eur J Immunol 35(4): 1113–23.

    PubMed  CAS  Google Scholar 

  • Sinclair, J. (2008). “Human cytomegalovirus: Latency and reactivation in the myeloid lineage.” J Clin Virol 41(3): 180–5.

    PubMed  CAS  Google Scholar 

  • Sinclair, J. (2008). “Manipulation of dendritic cell functions by human cytomegalovirus.” Expert Rev Mol Med 10: e35.

    PubMed  Google Scholar 

  • Slobedman, B., P. A. Barry, et al. (2009). “Virus encoded homologs of cellular interleukin-10 and their control of host immune function.” J Virol 83(19): 9618–29

    PubMed  CAS  Google Scholar 

  • Snyder, C. M., K. S. Cho, et al. (2008). “Memory inflation during chronic viral infection is maintained by continuous production of short-lived, functional T cells.” Immunity 29(4): 650–9.

    PubMed  CAS  Google Scholar 

  • Snyder, C. M., A. Loewendorf, et al. (2009). “CD4+ T Cell Help Has an Epitope-Dependent Impact on CD8+ T Cell Memory Inflation during Murine Cytomegalovirus Infection.” J Immunol 183(6): 3932–41

    PubMed  CAS  Google Scholar 

  • Steininger, C., E. Puchhammer-Stockl, et al. (2006). “Cytomegalovirus disease in the era of highly active antiretroviral therapy (HAART).” J Clin Virol 37(1): 1–9.

    PubMed  CAS  Google Scholar 

  • Streblow, D. N., J. Dumortier, et al. (2008). “Mechanisms of cytomegalovirus-accelerated vascular disease: induction of paracrine factors that promote angiogenesis and wound healing.” Curr Top Microbiol Immunol 325: 397–415.

    PubMed  CAS  Google Scholar 

  • Sun, J. C. and M. J. Bevan (2003). “Defective CD8 T cell memory following acute infection without CD4 T cell help.” Science 300(5617): 339–42.

    PubMed  CAS  Google Scholar 

  • Trombetta, E. S. and I. Mellman (2005). “Cell biology of antigen processing in vitro and in vivo.” Annu Rev Immunol 23: 975–1028.

    PubMed  CAS  Google Scholar 

  • Tyznik, A. J., E. Tupin, et al. (2008). “Cutting edge: the mechanism of invariant NKT cell responses to viral danger signals.” J Immunol 181(7): 4452–6.

    PubMed  CAS  Google Scholar 

  • van der Wal, F. J., M. Kikkert, et al. (2002). “The HCMV gene products US2 and US11 target MHC class I molecules for degradation in the cytosol.” Curr Top Microbiol Immunol 269: 37–55.

    PubMed  Google Scholar 

  • van Dommelen, S. L., H. A. Tabarias, et al. (2003). “Activation of natural killer (NK) T cells during murine cytomegalovirus infection enhances the antiviral response mediated by NK cells.” J Virol 77(3): 1877–84.

    PubMed  Google Scholar 

  • Van Keulen, V. P., B. Ciric, et al. (2006). “Immunomodulation using the recombinant monoclonal human B7-DC cross-linking antibody rHIgM12.” Clin Exp Immunol 143(2): 314–21.

    PubMed  Google Scholar 

  • van Leeuwen, E. M., E. B. Remmerswaal, et al. (2004). “Emergence of a CD4  +  CD28- granzyme B+, cytomegalovirus-specific T cell subset after recovery of primary cytomegalovirus infection.” J Immunol 173(3): 1834–41.

    PubMed  Google Scholar 

  • van Lier, R. A., I. J. ten Berge, et al. (2003). “Human CD8(+) T-cell differentiation in response to viruses.” Nat Rev Immunol 3(12): 931–9.

    PubMed  Google Scholar 

  • Varani, S., G. Frascaroli, et al. (2009). “Human cytomegalovirus targets different subsets of ­antigen-presenting cells with pathological consequences for host immunity: implications for immunosuppression, chronic inflammation and autoimmunity.” Rev Med Virol 19(3): 131–45.

    PubMed  CAS  Google Scholar 

  • Vescovini, R., C. Biasini, et al. (2007). “Massive load of functional effector CD4+ and CD8+ T cells against cytomegalovirus in very old subjects.” J Immunol 179(6): 4283–91.

    PubMed  CAS  Google Scholar 

  • Vink, C., E. Beuken, et al. (2000). “Complete DNA sequence of the rat cytomegalovirus genome.” J Virol 74(16): 7656–65.

    PubMed  CAS  Google Scholar 

  • Vyas, J. M., A. G. Van der Veen, et al. (2008). “The known unknowns of antigen processing and presentation.” Nat Rev Immunol 8(8): 607–18.

    PubMed  CAS  Google Scholar 

  • Walton, S. M., P. Wyrsch, et al. (2008). “The dynamics of mouse cytomegalovirus-specific CD4 T cell responses during acute and latent infection.” J Immunol 181(2): 1128–34.

    PubMed  CAS  Google Scholar 

  • Walzer, T., M. Dalod, et al. (2005). “Natural killer cell-dendritic cell crosstalk in the initiation of immune responses.” Expert Opin Biol Ther 5 Suppl 1: S49-59.

    PubMed  CAS  Google Scholar 

  • Wang, S. and L. Chen (2004). “Co-signaling molecules of the B7-CD28 family in positive and negative regulation of T lymphocyte responses.” Microbes Infect 6(8): 759–66.

    PubMed  CAS  Google Scholar 

  • Ware, C. F. (2008). “Targeting lymphocyte activation through the lymphotoxin and LIGHT ­pathways.” Immunol Rev 223: 186–201.

    PubMed  CAS  Google Scholar 

  • Welsh, R. M., J. O. Brubaker, et al. (1991). “Natural killer (NK) cell response to virus infections in mice with severe combined immunodeficiency. The stimulation of NK cells and the NK cell-dependent control of virus infections occur independently of T and B cell function.” J Exp Med 173(5): 1053–63.

    PubMed  CAS  Google Scholar 

  • Wesley, J. D., M. S. Tessmer, et al. (2008). “NK cell-like behavior of Valpha14i NK T cells during MCMV infection.” PLoS Pathog 4(7): e1000106.

    PubMed  Google Scholar 

  • Woodland, D. L. and R. W. Dutton (2003). “Heterogeneity of CD4(+) and CD8(+) T cells.” Curr Opin Immunol 15(3): 336–42.

    PubMed  CAS  Google Scholar 

  • Yewdell, J. W. and A. B. Hill (2002). “Viral interference with antigen presentation.” Nat Immunol 3(11): 1019–25.

    PubMed  CAS  Google Scholar 

  • Zanghellini, F., S. B. Boppana, et al. (1999). “Asymptomatic primary cytomegalovirus infection: virologic and immunologic features.” J Infect Dis 180(3): 702–7.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chris A. Benedict or Edith M. Janssen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Benedict, C.A., Arens, R., Loewendorf, A., Janssen, E.M. (2012). Modulation of T-Cell Mediated Immunity by Cytomegalovirus. In: Aliberti, J. (eds) Control of Innate and Adaptive Immune Responses during Infectious Diseases. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0484-2_7

Download citation

Publish with us

Policies and ethics