Skip to main content

Effects of Microstructure on the Speed and Attenuation of Elastic Waves: Formal Theory and Simple Approximations

  • Chapter
Review of Progress in Quantitative Nondestructive Evaluation

Part of the book series: Library of Congress Cataloging in Publication Data ((RPQN,volume 2A))

Abstract

The sensitivity of the propagation of an elastic wave to changes in the microstructural details of a material is well known.1 In particular, numerous experiments have shown that the attenuation of the wave is sensitive to the inclusions, voids, cracks, grain boundaries, twin boundaries, interphase boundaries, magnetic domain walls, dislocations, substitutional impurities of a material. For attenuation studies in metals, ceramics and polycrystals, three formulas, each for different wavelength regimes, are generally used in the quantitative interpretation of experimental results.1–3 If λ is the wavelength of the elastic wave and <D> is the average grain diameter, then in the Rayleigh regime (λ≫D), α = A1<D>3λ4, in the stochastic regime (λ≃D), α = A2<D>λ2, and in the diffusive regime (λ≪D), α = A3/<D>-1. By fitting the data to these formulas, one tries to infer <D>.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. E. Green, Effect of Metallic Microstructure on Ultrasonic Attenuation, in: “Nondestructive Evaluation: Microstructure Characterization and Reliability Strategies,” O. Buck and S. M. Wolf, eds., AIME, Warrendale, PA (1981).

    Google Scholar 

  2. A. B. Bhatia, “Ultrasonic Absorption,” Oxford Univ. Press, Oxford (1967), p. 278.

    Google Scholar 

  3. E. P. Papadakis, Revised Grain-Scattering Formulas and Tables, J. Acoust. Soc. Am. 37: 703 (1965).

    Article  Google Scholar 

  4. A. G. Evans, B. R. Tittmann, L. Ahlberg, B. T. Khuri-Yakub, and G. S. Kino, Ultrasonic Attenuation in Ceramics, J. Appl. Phys. 49: 2669 (1978).

    Article  Google Scholar 

  5. S. Serabian and R. S. Williams, Experimental Determination of Ultrasonic Attenuation Characteristics Using the Roney Generalized Theory, Mat. Eval. 36: 55 (1978).

    Google Scholar 

  6. J. E. Gubernatis, E. Domany, and J. A. Krumhansl, Formal Aspects of the Theory of the Scattering of Ultrasound by Flaws in Elastic Materials, J. Appl. Phys. 48: 2804 (1977).

    Article  Google Scholar 

  7. J. E. Gubernatis, E. Domany, and J. A. Krumhansl, Elastic Wave Scattering Theory with Application to Nondestructive Evaluation, in: Physical Principles of Nondestructive Evaluation, D. O. Thompson, ed., Springer-Verlag, Heidelberg, to appear.

    Google Scholar 

  8. U. Frisch, Wave Propagation in Random Media, in: “Probabilistic Methods in Applied Mathematics,” ed. A. T. Bharuch-Reid, Academic, New York (1968).

    Google Scholar 

  9. K. M. Watson, Multiple Scattering in Quantum Mechanics, Phys. Rev. 105: 1388 (1957).

    Article  MathSciNet  MATH  Google Scholar 

  10. L. L. Foldy, “Multiple Scattering Theory of Waves,” Phys. Rev. 67: 107 (1945).

    Article  MathSciNet  MATH  Google Scholar 

  11. M. Lax, Multiple Scattering of Waves, Rev. Mod. Phys. 23: 287 (1951); Multiple Scattering of Waves. II., Phys. Rev. 85: 621 (1952).

    Article  MathSciNet  Google Scholar 

  12. See for example, S. K. Datta, A Self-Consistent Approach to Multiple Scattering by Elastic Ellipsoidal Inclusions, J. Appl. Mech. 44:657 (1977); and V. K. Varadan, V. V. Varadan and Y. H. Pao, Multiple Scattering of Elastic Waves by Cylinders of Arbitrary Cross Section. I. SH Waves, J. Acoust. Soc. Am. 63: 1310 (1978).

    Google Scholar 

  13. A. J. Devaney, Multiple Scattering Theory for Discrete, Elastic Media, J. Math. Phys. 21: 2603 (1980).

    Article  MathSciNet  Google Scholar 

  14. C. M. Sayers, On the Propagation of Ultrasound in Highly Concentrated Mixtures and Suspensions, J. Phys. D 13: 179 (1980).

    Article  Google Scholar 

  15. C. M. Sayers and R. L. Smith, “The Propagation of Ultrasound in Porous Media,” Harwell Laboratory Report AERE-R 1903 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Gubernatis, J.E., Domany, E. (1983). Effects of Microstructure on the Speed and Attenuation of Elastic Waves: Formal Theory and Simple Approximations. In: Thompson, D.O., Chimenti, D.E. (eds) Review of Progress in Quantitative Nondestructive Evaluation. Library of Congress Cataloging in Publication Data, vol 2A. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3706-5_53

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3706-5_53

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3708-9

  • Online ISBN: 978-1-4613-3706-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics