Skip to main content

The Aortopathy of Bicuspid Aortic Valves

  • Chapter
  • First Online:
Controversies in Aortic Dissection and Aneurysmal Disease

Abstract

Bicuspid aortic valve (BAV) disease is a common congenital malformation associated with significant morbidity and mortality, mostly related to valvular dysfunction. BAV has been associated with a dilated proximal aorta and a risk of dissection and rupture. Uncertainty remains about whether this aortopathy is caused by molecular dysregulation during embryonic development, or whether aortic root dilation is a function of abnormal hemodynamics. This has therapeutic ramifications especially since the optimal timing of aortic root replacement in BAV is not known and the etiology of aortic root dilation will be instrumental in devising a definitive answer to this problem. In this chapter, we will discuss the genetics and molecular biology of BAV, especially as they pertain to aortic root dilation. We will also present the two competing theories of BAV aortopathy. Attention is then directed to current guidelines for surveillance and treatment of BAV aortopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hoffman JI, Kaplan S. The incidence of congenital heart disease. J Am Coll Cardiol. 2002;39(12):1890–900.

    PubMed  Google Scholar 

  2. Nistri S, Basso C, Marzari C, Mormino P, Thiene G. Frequency of bicuspid aortic valve in young male conscripts by echocardiography. Am J Cardiol. 2005;96(5):718–21.

    PubMed  Google Scholar 

  3. Tutar E, Ekici F, Atalay S, Nacar N. The prevalence of bicuspid aortic valve in newborns by echocardiographic screening. Am Heart J. 2005;150(3):513–5.

    PubMed  Google Scholar 

  4. Ward C. Clinical significance of the bicuspid aortic valve. Heart. 2000;83(1):81–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Roberts WC. The congenitally bicuspid aortic valve. A study of 85 autopsy cases. Am J Cardiol. 1970;26(1):72–83.

    CAS  PubMed  Google Scholar 

  6. Osler W. The bicuspid condition of the aortic valves. Transactions of the Association of American Physicians. Philadelphia: Wm. J. Dornan; 1886. p. 185–92.

    Google Scholar 

  7. Abbott ME. Coarctation of the aorta of the adult type. Am Heart J. 1928;3:578–618.

    Google Scholar 

  8. McKusick VA. Association of congenital bicuspid aortic valve and erdheim’s cystic medial necrosis. Lancet. 1972;1(7758):1026–7.

    CAS  PubMed  Google Scholar 

  9. Roos-Hesselink JW, Schölzel BE, Heijdra RJ, Spitaels SE, Meijboom FJ, et al. Aortic valve and aortic arch pathology after coarctation repair. Heart. 2003;89(9):1074–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Hinton Jr RB, Martin LJ, Tabangin ME, Mazwi ML, Cripe LH, Benson DW. Hypoplastic left heart syndrome is heritable. J Am Coll Cardiol. 2007;50(16):1590–5.

    PubMed  Google Scholar 

  11. Bolling SF, Iannettoni MD, Dick 2nd M, Rosenthal A, Bove EL. Shone’s anomaly: operative results and late outcome. Ann Thorac Surg. 1990;49(6):887–93.

    CAS  PubMed  Google Scholar 

  12. Sybert VP. Cardiovascular malformations and complications in Turner syndrome. Pediatrics. 1998;101(1):E11.

    CAS  PubMed  Google Scholar 

  13. De Rubens Figueroa J, Rodríguez LM, Hach JL, Del Castillo RV, Martínez HO. Cardiovascular spectrum in Williams-Beuren syndrome: the Mexican experience in 40 patients. Tex Heart Inst J. 2008;35(3):279–85.

    PubMed Central  PubMed  Google Scholar 

  14. Siu SC, Silversides CK. Bicuspid aortic valve disease. J Am Coll Cardiol. 2010;55(25):2789–800.

    PubMed  Google Scholar 

  15. Higgins CB, Wexler L. Reversal of dominance of the coronary arterial system in isolated aortic stenosis and bicuspid aortic valve. Circulation. 1975;52(2):292–6.

    CAS  PubMed  Google Scholar 

  16. Rashid A, Saucedo JF, Hennebry TA. Association of single coronary artery and congenital bicuspid aortic valve with review of literature. J Interv Cardiol. 2005;18(5):389–91.

    PubMed  Google Scholar 

  17. Hutchins GM, Nazarian IH, Bulkley BH. Association of left dominant coronary arterial system with congenital bicuspid aortic valve. Am J Cardiol. 1978;42(1):57–9.

    CAS  PubMed  Google Scholar 

  18. Chakraborty S, Combs MD, Yutzey KE. Transcriptional regulation of heart valve progenitor cells. Pediatr Cardiol. 2010;31(3):414–21.

    PubMed Central  PubMed  Google Scholar 

  19. Kirby ML, Gale TF, Stewart DE. Neural crest cells contribute to normal aorticopulmonary septation. Science. 1983;220(4601):1059–61.

    CAS  PubMed  Google Scholar 

  20. Rothenberg F, Fisher SA, Watanabe M. Sculpting the cardiac outflow tract. Birth Defects Res C Embryo Today. 2003;69(1):38–45.

    CAS  PubMed  Google Scholar 

  21. Tadros T, Klein MD, Shapira OM. Ascending aortic dilation associated with bicuspid aortic valve: pathophysiology, molecular biology and clinical implications. Circulation. 2009;119(6):880–90.

    PubMed  Google Scholar 

  22. Hurle JM, Ojeda JL. Cell death during the development of the truncus and conus of the chick embryo heart. J Anat. 1979;129(pt2):427–39.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Hurle JM, Colvée E, Blanco AM. Development of mouse semilunar valves. Anat Embryol (Berl). 1980;160(1):83–91.

    CAS  Google Scholar 

  24. Braverman AC, Güven H, Beardsless MA, Makan M, Kates AM, Moon MR. The bicuspid aortic valve. Curr Probl Cardiol. 2005;30(9):470–522.

    PubMed  Google Scholar 

  25. Fernandes SM, Sanders SP, Khairy P, Jenkins KJ, Gauvreau K, et al. Morphology of bicuspid aortic valves in children and adolescents. J Am Coll Cardiol. 2004;44(8):1648–51.

    PubMed  Google Scholar 

  26. Tzemos N, Therrien J, Yip J, Thanassoulis G, Tremblay S, et al. Outcomes in adults with bicuspid aortic valves. JAMA. 2008;300(11):1317–25.

    CAS  PubMed  Google Scholar 

  27. Michelena HI, Desjardins VA, Avierinos JF, Russo A, Nkomo VT, et al. Natural history of asymptomatic patients with normally functioning or minimally dysfunctional bicuspid aortic valve in the community. Circulation. 2008;117(21):2776–84.

    PubMed Central  PubMed  Google Scholar 

  28. Beroukhim RS, Kruzick TL, Taylor AL, Gao D, Yetman AT. Progression of aortic dilation in children with a functionally normal bicuspid aortic valve. Am J Cardiol. 2006;98(6):828–30.

    PubMed  Google Scholar 

  29. Gurvitz M, Chang RK, Drant S, Allada V. Frequency of aortic dilation in children with a bicuspid aortic valve. Am J Cardiol. 2004;94(10):1337–40.

    PubMed  Google Scholar 

  30. Holmes KW, Lehmann CU, Dalal D, Nasir K, Dietz HC, et al. Progressive dilation of the ascending aorta in children with isolated bicuspid aortic valve. Am J Cardiol. 2007;99(7):978–83.

    PubMed  Google Scholar 

  31. Pachulski RT, Weinberg AL, Chan KL. Aortic aneurysm in patients with functionally normal or minimally stenotic bicuspid aortic valve. Am J Cardiol. 1991;67(8):781–2.

    CAS  PubMed  Google Scholar 

  32. Nistri S, Sorbo MD, Marin M, Palisi M, Scognamigilio R, Thiene G. Aortic root dilation in young men with normally functioning bicuspid aortic valves. Heart. 1999;82(1):19–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Hahn RT, Roman MJ, Mogtader AH, Devereux RB. Association of aortic dilation with regurgitant, stenotic and functionally normally bicuspid aortic valves. J Am Coll Cardiol. 1992;19(2):283–8.

    CAS  PubMed  Google Scholar 

  34. Keane MG, Wiegers SE, Plappert T, Pochettino A, Bavaria JE, Sutton MG. Bicuspid aortic valves are associated with aortic dilation out of proportion to coexistant valvular lesions. Circulation. 2000;102(19 Suppl):III35–9.

    CAS  PubMed  Google Scholar 

  35. Ferencik M, Pape LA. Changes in size of ascending aorta and aortic valve function with time in patients with congenitally bicuspid aortic valves. Am J Cardiol. 2003;92(1):43–6.

    PubMed  Google Scholar 

  36. Dore A, Brochu MC, Baril JF, Guertin MC, Mercier LA. Progressive dilation of the diameter of the aortic root in adults with a bicuspid aortic valve. Cardiol Young. 2003;13(6):526–31.

    PubMed  Google Scholar 

  37. Novaro GM, Griffin BP. Congenital bicuspid aortic valve and rate of ascending aortic dilatation. Am J Cardiol. 2004;93(4):525–6.

    PubMed  Google Scholar 

  38. Davies RR, Kaple RK, Mandapati D, Gallo A, Botta Jr DM, et al. Natural history of ascending aortic aneurysms in the setting of an unreplaced bicuspid aortic valve. Ann Thorac Surg. 2007;83(4):1338–44.

    PubMed  Google Scholar 

  39. Shimada I, Rooney SJ, Pagano D, Farneti PA, Davies P, et al. Prediction of thoracic aortic aneurysm expansion: validation of formulae describing growth. Ann Thorac Surg. 1999;67(6):1968–70.

    CAS  PubMed  Google Scholar 

  40. Coady MA, Rizzo JA, Hammond GL, Kopf GS, Elefteriades JA. Surgical intervention criteria for thoracic aortic aneurysms: a study of growth rates and complications. Ann Thorac Surg. 1999;67(6):1922–6.

    CAS  PubMed  Google Scholar 

  41. Yasuda H, Nakatani S, Stugaard M, Tsujita-Kuroda Y, Bando K, et al. Failure to prevent progressive dilation of ascending aorta by aortic valve replacement in patients with bicuspid aortic valve: comparison with tricuspid aortic valve. Circulation. 2003;108 Suppl 1:II291–4.

    PubMed  Google Scholar 

  42. Coady MA, Rizzo JA, Hammond GL, Mandapati D, Darr U, et al. What is the appropriate size criterion for resection of thoracic aortic aneurysms? J Thorac Cardiovasc Surg. 1997;113(3):476–91.

    CAS  PubMed  Google Scholar 

  43. Davies RR, Goldstein LJ, Coady MA, Tittle SL, Rizzo JA, et al. Yearly rupture or dissection rates for thoracic aortic aneurysms: simple prediction based on size. Ann Thorac Surg. 2002;73(1):17–27.

    PubMed  Google Scholar 

  44. Elefteriades JA. Natural history of thoracic aortic aneurysms: indications for surgery, and surgical versus nonsurgical risks. Ann Thorac Surg. 2002;74(5):S 1877–80.

    Google Scholar 

  45. La Canna G, Ficarra E, Tsagalau E, Nardi M, Morandini A, et al. Progression rate of ascending aortic dilation in patients with normally functioning bicuspid and tricuspid aortic valves. Am J Cardiol. 2006;98(2):249–53.

    PubMed  Google Scholar 

  46. Edwards ED, Leaf DS, Edwards JE. Dissecting aortic aneurysm associated with congenital bicuspid aortic valve. Circulation. 1978;57(5):1022–5.

    CAS  PubMed  Google Scholar 

  47. Gore I. Dissecting aneurysms of the aorta in persons under forty years of age. AMA Arch Pathol. 1953;55(1):1–13.

    CAS  PubMed  Google Scholar 

  48. Svensson LG, Kim KH, Lytle BW, Cosgrove DM. Relationship of aortic cross-sectional area to height ratio and risk of aortic dissection in patients with bicuspid aortic valves. J Thorac Cardiovasc Surg. 2003;126(3):892–3.

    PubMed  Google Scholar 

  49. Larson EW, Edwards WD. Risk factors for aortic dissection: a necropsy study of 161 cases. Am J Cardiol. 1984;53(6):849–55.

    CAS  PubMed  Google Scholar 

  50. Roberts CS, Roberts WC. Dissection of the aorta associated with congenital malformation of the aortic valve. J Am Coll Cardiol. 1991;17(3):712–6.

    CAS  PubMed  Google Scholar 

  51. Michelena HI, Khanna AD, Mahoney D, Margaryan E, Topilsky Y, et al. Incidence of aortic complications in patients with bicuspid aortic valves. JAMA. 2011;306(10):1104–12.

    CAS  PubMed  Google Scholar 

  52. Gale AN, McKusick VA, Hutchins GM, Gott VL. Familial congenital bicuspid aortic valve: secondary calcific aortic stenosis and aortic aneurysm. Chest. 1977;72(5):668–70.

    CAS  PubMed  Google Scholar 

  53. Emanuel R, Withers R, O’Brien K, Ross P, Feizi O. Congenitally bicuspid aortic valves. Clinicogenetic study of 41 families. Br Heart J. 1978;40(12):1402–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Clementi M, Notari L, Borghi A, Tenconi R. Familial congenital bicuspid aortic valve: a disorder of uncertain inheritance. Am J Med Genet. 1996;62(4):336–8.

    CAS  PubMed  Google Scholar 

  55. Huntington K, Hunter AG, Chan KL. A prospective study to assess the frequency of familial clustering of congenital bicuspid aortic valve. J Am Coll Cardiol. 1997;30(7):1809–12.

    CAS  PubMed  Google Scholar 

  56. McDonald K, Maurer BJ. Familial aortic valve disease: evidence for a genetic influence? Eur Heart J. 1989;10(7):676–7.

    CAS  PubMed  Google Scholar 

  57. Cripe L, Andelfinger G, Martin LJ, Shooner K, Benson DW. Bicuspid aortic valve is heritable. J Am Coll Cardiol. 2004;44(1):138–43.

    PubMed  Google Scholar 

  58. Martin LJ, Ramachandran V, Cripe LH, Hinton RB, Adelfinger G, et al. Evidence in favor of linkage to human chromosomal regions 18q, 5q and 3q for bicuspid aortic valve and associated cardiovascular malformations. Hum Genet. 2007;121(2):275–84.

    CAS  PubMed  Google Scholar 

  59. Garg V. Molecular genetics of aortic valve disease. Curr Opin Cardiol. 2006;21(3):180–4.

    PubMed  Google Scholar 

  60. Fernández B, Durán AC, Fernández-Gallego T, Fernández MC, Such M, et al. Bicuspid aortic valves with different spatial orientations of the leaflets are distinct etiological entities. J Am Coll Cardiol. 2009;54(24):2312–8.

    PubMed  Google Scholar 

  61. Aicher D, Urbich C, Zeiher A, Dimmeler S, Schäfers HJ. Endothelial nitric oxide synthase in bicuspid aortic valve disease. Ann Thorac Surg. 2007;83(4):1290–4.

    PubMed  Google Scholar 

  62. Garg V, Muth AN, Ransom JF, Schluterman MK, Barnes R, et al. Mutations in NOTCH1 cause aortic valve disease. Nature. 2005;437(7056):270–4.

    CAS  PubMed  Google Scholar 

  63. McKellar SH, Tester DJ, Yagubyan M, Majumdar R, Ackerman MJ, Sundt 3rd TM. Novel NOTCH1 mutations in patients with bicuspid aortic valve disease and thoracic aortic aneurysms. J Thorac Cardiovasc Surg. 2007;134(2):290–6.

    CAS  PubMed  Google Scholar 

  64. Girdauskas E, Schulz S, Borger MA, Mierzwa M, Kuntze T. Transforming growth factor-beta receptor type II mutation in a patient with bicuspid aortic valve disease and intraoperative aortic dissection. Ann Thorac Surg. 2011;91(5):e70–1.

    PubMed  Google Scholar 

  65. Neptune ER, Frischmeyer PA, Arking DE, Myers L, Bunton TE, et al. Dysregulation of TGF-beta activation contributes to pathogenesis in Marfan syndrome. Nat Genet. 2003;33:407–11.

    CAS  PubMed  Google Scholar 

  66. Ng CM, Cheng A, Myers LA, Martinez-Murillo F, Jie C, et al. TGF-beta-dependant pathogenesis of mitral valve prolapse in a mouse model of Marfan syndrome. J Clin Invest. 2004;114:1586–92.

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Holm TM, Habashi JP, Doyle JJ, Bedja D, Chen Y, et al. Noncanonical TGFbeta signaling contributes to aortic aneurysm progression in Marfan syndrome mice. Science. 2011;332:358–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Tischfield MA, Bosley TM, Salih MA, Alorainy IA, Sener EC, et al. Homozygous HOXA1 mutations disrupt human brainstem, inner ear, cardiovascular and cognitive development. Nat Genet. 2005;37(10):1035–7.

    CAS  PubMed  Google Scholar 

  69. Andelfinger G, Tapper AR, Welch RC, Vanoye CG, George Jr AL, Benson DW. KCNJ2 mutation results in Andersen syndrome with sex-specific cardiac and skeletal muscle phenotypes. Am J Hum Genet. 2002;71(3):663–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Guo DC, Pannu H, Tran-Fadulu V, Papke CL, Yu RK, et al. Mutations in smooth muscle alpha-actin (ACTA2) lead to thoracic aortic aneurysms and dissections. Nat Genet. 2007;39(12):1488–93.

    CAS  PubMed  Google Scholar 

  71. Girdauskas E, Borger MA, Secknus MA, Girdauskas G, Kuntze T. Is aortopathy in bicuspid aortic valve disease a congenital defect or a result of abnormal hemodynamics? A critical reappraisal of a one-sided argument. Eur J Cardiothorac Surg. 2011;39(6):809–14.

    PubMed  Google Scholar 

  72. Erdheim J. Medionecrosis aortae idiopathica. Virchows Arch. 1929;273:454–79.

    Google Scholar 

  73. Erdheim J. Medionecrosis aortae idiopathica cystica. Virchows Arch. 1930;276:187–229.

    Google Scholar 

  74. Carlson RG, Lillehei CW, Edwards JE. Cystic medial necrosis of the ascending aorta in relation to age and hypertension. Am J Cardiol. 1970;25(4):411–5.

    CAS  PubMed  Google Scholar 

  75. Francke U, Berg MA, Tynan K, Brenn T, Liu W, et al. A Gly1127Ser mutation in an EGF-like domain of the fibrillin 1 gene is a risk factor for ascending aortic aneurysm and dissection. Am J Hum Genet. 1995;56(6):1287–96.

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Bonderman D, Gharehbaghi-Schnell E, Wollenek G, Maurer G, Baumgartner H, Lang IM. Mechanisms underlying aortic dilation in congenital aortic valve malformation. Circulation. 1999;99(16):2138–43.

    CAS  PubMed  Google Scholar 

  77. Nataatmadja M, West M, West J, Summers K, Walker P, et al. Abnormal extracellular matrix protein transport associated with increased apoptosis of vascular smooth muscle cells in marfan syndrome and bicuspid aortic valve thoracic aortic aneurysm. Circulation. 2003;108 Suppl 1:II329–34.

    PubMed  Google Scholar 

  78. Della Corte A, Quarto C, Bancone C, Castaldo C, Di Meglio F, et al. Spatiotemporal patterns of smooth muscle cell changes in ascending aortic dilatation with bicuspid and tricuspid aortic valve stenosis: focus on cell-matrix signaling. J Thorac Cardiovasc Surg. 2008;135(1):8–18.

    CAS  PubMed  Google Scholar 

  79. Tang PC, Coady MA, Lovoulos C, Dardik A, Aslan M, et al. Hyperplastic cellular remodeling of the media in ascending thoracic aortic aneurysms. Circulation. 2005;112(8):1098–105.

    PubMed  Google Scholar 

  80. Schmid FX, Bielenberg K, Schneider A, Haussler A, Keyser A, Birnbaum D. Ascending aortic aneurysm associated with bicuspid and tricuspid aortic valve: involvement and clinical relevance of smooth muscle cell apoptosis and expression of cell death-initiating proteins. Eur J Cardiothorac Surg. 2003;23(4):537–43.

    PubMed  Google Scholar 

  81. Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res. 2003;92(8):827–39.

    CAS  PubMed  Google Scholar 

  82. Hiller O, Lichte A, Oberpichler A, Kocourek A, Tschesche H. Matrix metalloproteinases collagenase-2, macrophage elastase, collagenase-3, and membrane type 1-matrix metalloproteinase impair clotting by degradation of fibrinogen and factor XII. J Biol Chem. 2000;275(42):33008–13.

    CAS  PubMed  Google Scholar 

  83. Stolow MA, Bauzon DD, Li J, Sedgwick T, Liang VC, et al. Identification and characterization of a novel collagenase in Xenopus laevis: possible roles during frog development. Mol Biol Cell. 1996;7(10):1471–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Patterson ML, Atkins SJ, Knäuper V, Murphy G. Specific collagenolysis by gelatinase A, MMP-2, is determined by the hemopexin domain and not the fibronectin-like domain. FASEB Lett. 2001;503(2–3):158–62.

    CAS  Google Scholar 

  85. Phillippi JA, Klyachko EA, Kenny 4th JP, Eskay MA, Gorman RC, Gleason TG. Basal and oxidative stress-induced expression of metallothionein is decreased in ascending aortic aneurysms of bicuspid aortic valve patients. Circulation. 2009;119(18):2498–506.

    CAS  PubMed  Google Scholar 

  86. Fedak PW, de Sa MP, Verma S, Nili N, Kazemian P, et al. Vascular matrix remodeling in patients with bicuspid aortic valve malformations: implications for aortic dilatation. J Thorac Cardiovasc Surg. 2003;126(3):797–806.

    PubMed  Google Scholar 

  87. Boyum J, Fellinger EK, Schmoker JD, Trombley L, McPartland K, et al. Matrix metalloproteinase activity in thoracic aortic aneurysms associated with bicuspid and tricuspid aortic valves. J Thorac Cardiovasc Surg. 2004;127(3):686–91.

    CAS  PubMed  Google Scholar 

  88. Ikonomidis JS, Jones JA, Barbour JR, Stroud RE, Clark LL, et al. Expression of matrix metalloproteinases and endogenous inhibitors within ascending aortic aneurysms of patients with bicuspid or tricuspid aortic valves. J Thorac Cardiovasc Surg. 2007;133(4):1028–36.

    CAS  PubMed  Google Scholar 

  89. Koullias GJ, Korkolis DP, Ravichandran P, Psyrri A, Hatzaras I, Elefteriades J. Tissue microarray detection of matrix metalloproteinases, in diseased tricuspid and bicuspid aortic valves with or without pathology of the ascending aorta. Eur J Cardiothorac Surg. 2004;26(6):1098–103.

    PubMed  Google Scholar 

  90. LeMaire SA, Wang X, Wilks JA, Carter SA, Wen S, et al. Matrix metalloproteinases in ascending aortic aneurysms: bicuspid versus trileaflet aortic valves. J Surg Res. 2005;123(1):40–8.

    CAS  PubMed  Google Scholar 

  91. Newman KM, Ogata Y, Malon A, Irizarry E, Gandhi RH, et al. Identification of matrix metalloproteinases 3 (stromelysin-1) and 9 (gelatinase B) in abdominal aortic aneurysm. Arterioscler Thromb. 1994;14(8):1315–20.

    CAS  PubMed  Google Scholar 

  92. Sakalihasan N, Delvenne P, Nusgens BV, Limet R, Lapière CM. Activated forms of MMP2 and MMP9 in abdominal aortic aneurysms. J Vasc Surg. 1996;24(1):127–33.

    CAS  PubMed  Google Scholar 

  93. Ikonomidis JS, Ruddy JM, Benton Jr SM, Arroyo J, Brinsa TA, et al. Aortic dilatation with bicuspid aortic valves: cusp fusion correlates to matrix metalloproteinases and inhibitors. Ann Thorac Surg. 2012;93(2):457–63.

    PubMed Central  PubMed  Google Scholar 

  94. Tzemos N, Lyseggen E, Silversides C, Jamorski M, Tong JH, et al. Endothelial function, carotid-femoral stiffness, and plasma matrix metalloproteinase-2 in men with bicuspid aortic valve and dilated aorta. J Am Coll Cardiol. 2010;55(7):660–8.

    CAS  PubMed  Google Scholar 

  95. Boon RA, Seeger T, Heydt S, Fischer A, Hergenreider E, et al. MicroRNA-29 in aortic dilation: implications for aneurysm formation. Circ Res. 2011;109(10):1115–9.

    CAS  PubMed  Google Scholar 

  96. Merk DR, Chin JT, Dake BA, Maegdefessel L, Miller MO, et al. MiR-29b participates in early aneurysm development in Marfan syndrome. Circ Res. 2012;110(2):312–24.

    CAS  PubMed  Google Scholar 

  97. Lee RT, Kamm RD. Vascular mechanics for the cardiologist. J Am Coll Cardiol. 1994;23(6):1289–95.

    CAS  PubMed  Google Scholar 

  98. O’Rourke MF, Staessen JA, Vlachopoulos C, Duprez D, Plante GE. Clinical applications of arterial stiffness; definitions and reference values. Am J Hypertens. 2002;15(5):426–44.

    PubMed  Google Scholar 

  99. Lehoux S, Tedgui A. Cellular mechanics and gene expression in blood vessels. J Biomech. 2003;36(5):631–43.

    PubMed  Google Scholar 

  100. Della Corte A, Bancone C, Quarto C, Dialetto G, Covino FE, et al. Predictors of ascending aortic dilatation with bicuspid aortic valve: a wide spectrum of disease expression. Eur J Cardiothorac Surg. 2007;31(3):397–404.

    PubMed  Google Scholar 

  101. Robicsek F, Thubrikar MJ, Cook JW, Fowler B. The congenitally bicuspid aortic valve: how does it function? Why does it fail? Ann Thorac Surg. 2004;77(1):177–85.

    PubMed  Google Scholar 

  102. Hope MD, Meadows AK, Hope TA, Ordovas KG, Reddy GP, et al. Images in cardiovascular medicine. Evaluation of bicuspid aortic valve and aortic coarctation with 4D flow magnetic resonance imaging. Circulation. 2008;117(21):2818–9.

    PubMed  Google Scholar 

  103. Hope MD, Hope TA, Meadows AK, Ordovas KG, Urbania TH, et al. Bicuspid aortic valve: four-dimensional MR evaluation of ascending aortic systolic flow patterns. Radiology. 2010;255(1):53–61.

    PubMed  Google Scholar 

  104. Conti CA, Della Corte A, Votta E, Del Viscovo L, Bancone C, et al. Biomechanical implications of the congenital bicuspid aortic valve: a finite element study of aortic root function from in vivo data. J Thorac Cardiovasc Surg. 2010;140(4):890–6.

    PubMed  Google Scholar 

  105. den Reijer PM, Sallee 3rd D, van der Velden P, Zaaijer ER, Parks WJ, et al. Hemodynamic predictors of aortic dilatation in bicuspid aortic valve by velocity-encoded cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2010;12:4.

    Google Scholar 

  106. Nistri S, Grande-Allen J, Noale M, Basso C, Siviero P, et al. Aortic elasticity and size in bicuspid aortic valve syndrome. Eur Heart J. 2008;29(4):472–9.

    PubMed  Google Scholar 

  107. Buchner S, Hülsmann M, Poschenrieder F, Hamer OW, Fellner C, et al. Variable phenotypes of bicuspid aortic valve disease: classification by cardiovascular magnetic resonance. Heart. 2010;96(15):1233–40.

    PubMed  Google Scholar 

  108. Schaefer BM, Lewin MB, Stout KK, Gill E, Prueitt A, et al. The bicuspid aortic valve: an integrated phenotypic classification of leaflet morphology and aortic root shape. Heart. 2008;94(12):1634–8.

    CAS  PubMed  Google Scholar 

  109. Fazel SS, Mallidi HR, Lee RS, Sheehan MP, Liang D, et al. The aortopathy of bicuspid aortic valve disease has distinctive patterns and usually involves the transverse aortic arch. J Thorac Cardiovasc Surg. 2008;135(4):901–7.

    PubMed  Google Scholar 

  110. Russo CF, Mazzetti S, Garatti A, Ribera E, Milazzo A, et al. Aortic complications after bicuspid aortic valve replacement: long-term results. Ann Thorac Surg. 2002;74(5):S1773–6.

    PubMed  Google Scholar 

  111. Borger MA, Preston M, Ivanov J, Fedak PW, Davierwala P, et al. Should the ascending aorta be replaced more frequently in patients with bicuspid aortic valve disease? J Thorac Cardiovasc Surg. 2004;128(5):677–83.

    PubMed  Google Scholar 

  112. Goland S, Czer LS, De Robertis MA, Mirocha J, Kass RM, et al. Risk factors associated with reoperation and mortality in 252 patients after aortic valve replacement for congenitally bicuspid aortic valve disease. Ann Thorac Surg. 2007;83(3):931–7.

    PubMed  Google Scholar 

  113. Girdauskas E, Disha K, Raisin HH, Secknus MA, Borger MA, Kuntze T. Risk of late aortic events after an isolated aortic valve replacement for bicuspid aortic valve stenosis with concomitant ascending aortic dilation. Eur J Cardiothorac Surg. 2012;42(5):832–7.

    Google Scholar 

  114. Cotrufo M, Della Corte A, De Santo LS, Quarto C, De Feo M, et al. Different patterns of extracellular matrix protein expression in the convexity and the concavity of the dilated aorta with bicuspid aortic valve: preliminary results. J Thorac Cardiovasc Surg. 2005;130(2):504–11.

    CAS  PubMed  Google Scholar 

  115. Bonow RO, Carabello BA, Kanu C, de Leon Jr AC, Faxon DP, et al. ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (writing committee to revise the 1998 guidelines for the Management of Patients With Valvular Heart Disease): developed in collaboration with the Society of Cardiovascular Anesthesiologists: endorsed by the Society for Cardiovascular Angiography and Interventions and the Society of Thoracic Surgeons. Circulation. 2006;114(5):e84–231.

    PubMed  Google Scholar 

  116. Vasan RS, Larson MG, Levy D. Determinants of echocardiographic aortic root size. The Framingham Heart Study. Circulation. 1995;91(3):734–40.

    CAS  PubMed  Google Scholar 

  117. Roman MJ, Devereux RB, Kramer-Fox R, O’Loughlin J. Two-dimensional echocardiographic aortic root dimensions in normal children and adults. Am J Cardiol. 1989;64(8):507–12.

    CAS  PubMed  Google Scholar 

  118. Johnston KW, Rutherford RB, Tilson MD, Shah DM, Hollier L, Stanley JC. Suggested standards for reporting on arterial aneurysms. Subcommittee on Reporting Standards for Arterial Aneurysms, Ad Hoc Committee on Reporting Standards, Society for Vascular Surgery and North American Chapter, International Society for Cardiovascular Surgery. J Vasc Surg. 1991;13(3):452–8.

    CAS  PubMed  Google Scholar 

  119. Tamborini G, Galli CA, Maltagliati A, Andreini D, Pontone G, et al. Comparison of feasibility and accuracy of transthoracic echocardiography versus computed tomography in patients with known ascending aortic aneurysm. Am J Cardiol. 2006;98(7):966–9.

    PubMed  Google Scholar 

  120. Meijboom LJ, Groenink M, van der Wall EE, Romkes H, Stoker J, Mulder BJ. Aortic root asymmetry in marfan patients; evaluation by magnetic resonance imaging and comparison with standard echocardiography. Int J Card Imaging. 2000;16(3):161–8.

    CAS  PubMed  Google Scholar 

  121. Hartnell GG. Imaging of aortic aneurysms and dissection: CT and MRI. J Thorac Imaging. 2001;16(1):35–46.

    CAS  PubMed  Google Scholar 

  122. Morgan-Hughes GJ, Ca R, Owens PE, Marshall AJ. Dilatation of the aorta in pure, severe, bicuspid aortic valve stenosis. Am Heart J. 2004;147(4):736–40.

    PubMed  Google Scholar 

  123. Ocak I, Lacomis JM, Deible CR, Pealer K, Parag Y, Knollmann F. The aortic root: comparison of measurements from ECG-gated CT angiography with transthoracic echocardiography. J Thorac Imaging. 2009;24(3):223–6.

    PubMed  Google Scholar 

  124. Nathan DP, Xu C, Plappert T, Desjardins B, Gorman 3rd JH, et al. Increased ascending aortic wall stress in patients with bicuspid aortic valves. Ann Thorac Surg. 2011;92(4):1384–9.

    PubMed Central  PubMed  Google Scholar 

  125. Cooney JR, Ho VB. Answer to last month's radiology case and image: bicuspid aortic valve. Mil Med. 2006;171(8):iv–v.

    PubMed  Google Scholar 

  126. Myerson SG. Heart valve disease: investigation by cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2012;14:7.

    PubMed Central  PubMed  Google Scholar 

  127. Donato Aquaro G, Ait-Ali L, Basso ML, Lombardi M, Pingitore A, Festa P. Elastic properties of aortic wall in patients with bicuspid aortic valve by magnetic resonance imaging. Am J Cardiol. 2011;108(1):81–7.

    PubMed  Google Scholar 

  128. Hope MD, Hope TA, Crook SES, Ordovas KG, Urbania TH, et al. 4D flow CMR in assessment of valve-related ascending aortic disease. JACC Cardiovasc Imaging. 2011;4(7):781–7.

    PubMed  Google Scholar 

  129. Prokop EP, Palmer RF, Wheat Jr MW. Hydrodynamic forces in dissecting aneurysms. In-vitro studies in a Tygon model and in dog aortas. Circ Res. 1970;27(1):121–7.

    CAS  PubMed  Google Scholar 

  130. Shores J, Berger KR, Murphy E, Pyeritz RE. Progression of aortic dilatation and the benefit of long-term beta-adrenergic blockade in Marfan’s syndrome. N Engl J Med. 1994;330(19):1335–41.

    CAS  PubMed  Google Scholar 

  131. Ladouceur M, Fermanian C, Lupoglazoff JM, Edouard T, Dulac Y, et al. Effect of beta-blockade on ascending aortic dilatation in children with the Marfan syndrome. Am J Cardiol. 2007;99(3):406–9.

    CAS  PubMed  Google Scholar 

  132. Selamet Tierney ES, Feingold B, Printz BF, Park SC, Graham D, et al. Beta-blocker therapy does not alter the rate of aortic root dilation in pediatric patients with Marfan syndrome. J Pediatr. 2007;150(1):77–82.

    CAS  PubMed  Google Scholar 

  133. Gersony DR, McClaughlin MA, Jin Z, Gersony WM. The effect of beta-blocker therapy on clinical outcome in patients with Marfan’s syndrome: a meta-analysis. Int J Cardiol. 2007;114(3):303–8.

    PubMed  Google Scholar 

  134. Nagashima H, Sakomura Y, Aoka Y, Uto K, Kameyama K, et al. Angiotensin II type 2 receptor mediates vascular smooth muscle cell apoptosis in cystic medial degeneration associated with Marfan's syndrome. Circulation. 2001;104(12 Suppl 1):I282–7.

    CAS  PubMed  Google Scholar 

  135. Yetman AT, Bornemeier RA, McCrindle BW. Usefulness of enalapril versus propranolol or atenolol for prevention of aortic dilation in patients with the Marfan syndrome. Am J Cardiol. 2005;95(9):1125–7.

    CAS  PubMed  Google Scholar 

  136. Brooke BS, Habashi JP, Judge DP, Patel N, Loeys B, Dietz 3rd HC. Angiotensin II blockade and aortic-root dilation in Marfan’s syndrome. N Engl J Med. 2008;358(26):2787–95.

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Xiong W, Meisinger T, Knispel R, Worth JM, Baxter BT. MMP-2 regulates Erk 1/2 phosphorylation and aortic dilation in Marfan syndrome. Circ Res. 2012;110:e92–101.

    CAS  PubMed  Google Scholar 

  138. Nagashima H, Aoka Y, Sakomura Y, Sakuta A, Aomi S, et al. A 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, cerivastatin, suppresses production of matrix metalloproteinase-9 in human abdominal aortic aneurysm wall. J Vasc Surg. 2002;36(1):158–63.

    PubMed  Google Scholar 

  139. Elefteriades JA. Indications for aortic replacement. J Thorac Cardiovasc Surg. 2010;140(6 Suppl):S5–9.

    PubMed  Google Scholar 

  140. Braverman AC. Aortic involvement in patients with a bicuspid aortic valve. Heart. 2011;97(6):506–13.

    PubMed  Google Scholar 

  141. Milewicz DM, Dietz HC, Miller DC. Treatment of aortic disease in patients with Marfan syndrome. Circulation. 2005;111(11):e150–7.

    PubMed  Google Scholar 

  142. Pape LA, Tsai TT, Isselbacher EM, Oh JK, O’gara PT, et al. Aortic diameter >or = 5.5 cm is not a good predictor of type A aortic dissection: observations from the International Registry of Acute Aortic Dissection (IRAD). Circulation. 2007;116(10):1120–7.

    PubMed  Google Scholar 

  143. Oliver JM, Gallegro P, Gonzalez A, Aroca A, Bret M, Mesa JM. Risk factors for aortic complications in adults with coarctation of the aorta. J Am Coll Cardiol. 2004;44(8):1641–7.

    PubMed  Google Scholar 

  144. Rosenthal E. Coarctation of the aorta from fetus to adult: curable condition or life long disease process? Heart. 2005;91(11):1495–502.

    PubMed Central  PubMed  Google Scholar 

  145. Wang S, Zhang C, Zhang M, Liang B, Zhu H, et al. Activation of AMP-activated protein kinase α[alpha]2 by nicotine instigates formation of abdominal aortic aneurysms in mice in vivo. Nat Med. 2012;18:902–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  146. Agmon Y, Khandheria BK, Meissner I, Schwartz GL, Sicks JD, et al. Is aortic dilatation an atherosclerosis-related process? Clinical, laboratory, and transesophageal echocardiographic correlates of thoracic aortic dimensions in the population with implications for thoracic aortic aneurysm formation. J Am Coll Cardiol. 2003;42(6):1076–83.

    PubMed  Google Scholar 

  147. Cambria RA, Gloviczki P, Stanson AW, Cherry Jr KJ, Bower TC, et al. Outcome and expansion rate of 57 thoracoabdominal aortic aneurysms managed nonoperatively. Am J Surg. 1995;170(2):213–7.

    CAS  PubMed  Google Scholar 

  148. Muluk SC, Gertler JP, Brewster DC, Cambria RP, LaMuraglia GM, et al. Presentation and patterns of aortic aneurysms in young patients. J Vasc Surg. 1994;20(6):880–6.

    CAS  PubMed  Google Scholar 

  149. McDonald ML, Smedira NG, Blackstone EH, Grimm RA, Lytle BW, Cosgrove DM. Reduced survival in women after valve surgery for aortic regurgitation: effect of aortic enlargement and late aortic rupture. J Thorac Cardiovasc Surg. 2000;119(6):1205–12.

    CAS  PubMed  Google Scholar 

  150. Trimarchi S, Nienaber CA, Rampoldi V, Myrmel T, Suzuki T, Mehta RH, Bossone E, Cooper JV, Smith DE, Menicanti L, Frigiola A, Oh JK, Deeb MG, Isselbacher EM, Eagle KA, International Registry of Acute Aortic Dissection Investigators. Contemporary results of surgery in acute type A aortic dissection: the International Registry of Acute Aortic Dissection experience. J Thorac Cardiovasc Surg. 2005;129(1):112–22.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael D. Klein MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Siddiqi, O.K., Klein, M.D. (2014). The Aortopathy of Bicuspid Aortic Valves. In: Bonser, R., Pagano, D., Haverich, A., Mascaro, J. (eds) Controversies in Aortic Dissection and Aneurysmal Disease. Springer, London. https://doi.org/10.1007/978-1-4471-5622-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5622-2_3

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5621-5

  • Online ISBN: 978-1-4471-5622-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics