Skip to main content

Understanding Activity and Durability of Core/Shell Nanocatalysts for Fuel Cells

  • Chapter
  • First Online:
  • 3893 Accesses

Part of the book series: Lecture Notes in Energy ((LNEN,volume 9))

Abstract

We review recent analyses of the various aspects related to the performance of core/shell nanocatalyst particles used as electrodes in proton exchange membrane fuel cells. These nanoparticles usually consist of a thin layer of pure Pt in the shell and a core alloy made of a combination of metal elements that are targeted to meet two main objectives: reducing the catalyst price and enhancing the activity of the surface layer with respect to an equivalent particle made of pure Pt. Even though both objectives have been shown to be met, a huge challenge remains that is related to the long-term durability of the particle. This is because the less noble components are prone to relatively easy dissolution in the harsh acid conditions in which low-temperature fuel cells operate. The catalytic behavior of the nanoparticle towards the oxygen reduction reaction (ORR) and the evolution of the catalytic particle under this complex environment require a combination of experimental modern surface science and electrochemical techniques but also the formulation of models that allow a better understanding and a rational catalyst design. In this chapter, we review the state-of-the-art modeling of core/shell catalysts for the ORR. This involves various aspects that are intrinsic to the core/shell structure: surface segregation, metal dissolution, and catalytic activity. A number of methods ranging from ab initio density functional theory to classical molecular dynamics and Kinetic Monte Carlo are included in our discussion.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Wang B (2005) Recent development of no n-platinum catalysts for oxygen reduction reaction. J Power Sources 152:1–15

    Google Scholar 

  2. Mukerjee S, Srinivasan S, Soriaga MP, McBreen J (1995) Effect of preparation conditions of Pt alloys on their electronic, structural, and electrocatalytic activities for oxygen reduction. XRD, XAS, and electrochemical studies. J Phys Chem 99(13):4577–4589

    Google Scholar 

  3. Paulus UA, Wokaun A, Scherer GG, Schmidt TJ, Stamenkovic V, Radmilovic V, Markovic NM, Ross PN (2002) Oxygen reduction on carbon-supported Pt-Ni and Pt-Co alloy catalysts. J Phys Chem B 106(16):4181–4191

    Google Scholar 

  4. Stamenkovic V, Schmidt TJ, Ross PN, Markovic NM (2003) Surface segregation effects in electrocatalysis: kinetics of oxygen reduction reaction on polycrystalline Pt3Ni alloy surfaces. J Electroanal Chem 554–555:191–199

    Google Scholar 

  5. Stamenkovic VR, Mun BS, Mayrhofer KJJ, Ross PN, Markovic NM (2006) Effect of surface composition on electronic structure, stability, and electrocatalytic properties of Pt-transition metal alloys: Pt-skin versus Pt-skeleton surfaces. J Am Chem Soc 128(27):8813–8819

    Google Scholar 

  6. Stamenkovic V, Mun BS, Mayrhofer KJJ, Ross PN, Markovic NM, Rossmeisl J, Greeley J, Nørskov JK (2006) Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angew Chem Int Ed 45(18):2897–2901

    Google Scholar 

  7. Shao MH, Sasaki K, Adzic RR (2006) Pd-Fe nanoparticles as electrocatalysts for oxygen reduction. J Am Chem Soc 128(11):3526–3527

    Google Scholar 

  8. Stamenkovic VR, Fowler B, Mun BS, Wang G, Ross PN, Lucas CA, Marković NM (2007) Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315(5811):493–497

    Google Scholar 

  9. Shao M, Liu P, Zhang J, Adzic R (2007) Origin of enhanced activity in palladium alloy electrocatalysts for oxygen reduction reaction. J Phys Chem B 111(24):6772–6775

    Google Scholar 

  10. Mukerjee S, Srinivasan S (1993) Enhanced electrocatalysis of oxygen reduction on platinum alloys in proton exchange membrane fuel cells. J Electroanal Chem 357(1–2):201–224

    Google Scholar 

  11. Stamenkovic V, Schmidt TJ, Ross PN, Markovic NM (2002) Surface composition effects in electrocatalysis: kinetics of oxygen reduction on well-defined Pt3Ni and Pt3Co alloy surfaces. J Phys Chem B 106(46):11970–11979

    Google Scholar 

  12. Duong HT, Rigsby MA, Zhou W-P, Wieckowski A (2007) Oxygen reduction catalysis of the Pt3Co alloy in alkaline and acidic media studied by X-ray photoelectron spectroscopy and electrochemical methods. J Phys Chem C 111(36):13460–13465

    Google Scholar 

  13. Shao M, Shoemaker K, Peles A, Kaneko K, Protsailo L (2010) Pt monolayer on porous Pd−Cu alloys as oxygen reduction electrocatalysts. J Am Chem Soc 132(27):9253–9255

    Google Scholar 

  14. Chen S, Ferreira PJ, Sheng W, Yabuuchi N, Allard LF, Shao-Horn Y (2008) Enhanced activity for oxygen reduction reaction on “Pt3Co” nanoparticles: direct evidence of percolated and sandwich-segregation structures. J Am Chem Soc 130(42):13818–13819

    Google Scholar 

  15. Chen S, Sheng W, Yabuuchi N, Ferreira PJ, Allard LF, Shao-Horn Y (2008) Origin of oxygen reduction reaction activity on “Pt3Co” nanoparticles: atomically resolved chemical compositions and structures. J Phys Chem C 113(3):1109–1125

    Google Scholar 

  16. Yang R, Leisch J, Strasser P, Toney MF (2010) Structure of dealloyed PtCu3 thin films and catalytic activity for oxygen reduction. Chem Mater 22(16):4712–4720

    Google Scholar 

  17. Dutta I, Carpenter MK, Balogh MP, Ziegelbauer JM, Moylan TE, Atwan MH, Irish NP (2010) Electrochemical and structural study of a chemically dealloyed PtCu oxygen reduction catalyst. J Phys Chem C 114(39):16309–16320

    Google Scholar 

  18. Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jónsson H (2004) Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B 108(46):17886–17892

    Google Scholar 

  19. Greeley J, Mavrikakis M (2004) Alloy catalysts designed from first principles. Nat Mater 3(11):810–815

    Google Scholar 

  20. Greeley J, Mavrikakis M (2006) Near-surface alloys for hydrogen fuel cell applications. Catal Today 111(1–2):52–58

    Google Scholar 

  21. Knudsen J, Nilekar AU, Vang RT, Schnadt J, Kunkes EL, Dumesic JA, Mavrikakis M, Besenbacher F (2007) A Cu/Pt near-surface alloy for water-gas shift catalysis. J Am Chem Soc 129(20):6485–6490

    Google Scholar 

  22. Alayoglu S, Nilekar AU, Mavrikakis M, Eichhorn B (2008) Ru-Pt core-shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. Nat Mater 7(4):333–338

    Google Scholar 

  23. Calvo SR, Balbuena PB (2007) Theoretical analysis of reactivity on Pt(111) and Pt–Pd(111) alloys. Surf Sci 601(21):4786–4792

    Google Scholar 

  24. Lamas EJ, Balbuena PB (2006) Oxygen reduction on Pd0.75Co0.25 and Pt0.75Co0.25 surfaces: an ab initio comparative study. J Chem Theory Comput 2:1388–1394

    Google Scholar 

  25. Sotelo JC, Seminario JM (2007) Biatomic substrates for bulk-molecule interfaces: the PtCo-oxygen interface. J Chem Phys 127(24):244706

    Google Scholar 

  26. Mun BS, Lee C, Stamenkovic V, Markovic NM, Ross PN Jr (2005) Electronic structure of Pd thin films on Re(0001) studied by high-resolution core-level and valence-band photoemission. Phys Rev B Condens Matter Mater Phys 71(11):115420

    Google Scholar 

  27. Van Den Oetelaar LCA, Nooij OW, Oerlemans S, Denier Van Der Gon AW, Brongersma HH, Lefferts L, Roosenbrand AG, Van Veen JAR (1998) Surface segregation in supported Pd-Pt nanoclusters and alloys. J Phys Chem B 102(18):3445–3455

    Google Scholar 

  28. Gauthier Y, Joly Y, Baudoing R, Rundgren J (1985) Surface-sandwich segregation on nondilute bimetallic alloys: Pt50Ni50 and Pt78Ni22 probed by low-energy electron diffraction. Phys Rev B 31(10):6216–6218

    Google Scholar 

  29. Deckers S, Habraken FHPM, Van Der Weg WF, Denier Van Der Gon AW, Pluis B, Van Der Veen JF, Baudoing R (1990) Segregation at the Pt0.5Ni0.5(111) surface studied by medium-energy ion scattering. Phys Rev B 42(6):3253–3259

    Google Scholar 

  30. Burton JJ, Polizzotti RS (1977) Surface segregation in alloys: dilute solid solutions of Cr, Fe and Ni in Pt. Surf Sci 66(1):1–13

    Google Scholar 

  31. Gauthier Y, Senhaji A, Legrand B, Tréglia G, Becker C, Wandelt K (2003) An unusual composition profile: a LEED-TBIM study of Pt25Cu75(1 1 1). Surf Sci 527(1–3):71–79

    Google Scholar 

  32. Gauthier Y, Baudoing-Savois R, Bugnard JM, Hebenstreit W, Schmid M, Varga P (2000) Segregation and chemical ordering in the surface layers of Pt25Co75(111): a LEED/STM study. Surf Sci 466(1–3):155–166

    Google Scholar 

  33. Gauthier Y, Baudoing-Savois R, Rosink JJWM, Sotto M (1993) LEED study of Pt25Co75(111). Surf Sci 297(2):193–201

    Google Scholar 

  34. Visser RF, Roux JP (1991) Segregation and oxidation studies on Cr, Cr5Pt and Cr15Pt. Appl Surf Sci 51(3–4):115–124

    Google Scholar 

  35. Creemers C, Deurinck P (1997) Platinum segregation to the (111) surface of ordered Pt80Fe20: LEIS results and model simulations. Surf Interface Anal 25(3):177–190

    Google Scholar 

  36. Hansen PL, Molenbroek AM, Ruban AV (1997) Alloy formation and surface segregation in zeolite-supported Pt-Pd bimetallic catalysts. J Phys Chem B 101(10):1861–1868

    Google Scholar 

  37. Chen W, Severin L, Göthelid M, Hammar M, Cameron S, Paul J (1994) Electronic and geometric structure of clean Pt3Ti(111). Phys Rev B 50(8):5620–5627

    Google Scholar 

  38. Brown D, Quinn PD, Woodruff DP, Noakes TCQ, Bailey P (2002) Surface and sub-surface segregation at the Pt25Rh75(111) surface: a medium energy ion scattering study. Surf Sci 497(1–3):1–12

    Google Scholar 

  39. Tsong TT, Ren DM, Ahmad M (1988) Atomic-layer by atomic-layer compositional depth profiling: surface segregation and impurity cosegregation of Pt-Rh and Pt-Ru alloys. Phys Rev B 38(11):7428–7435

    Google Scholar 

  40. Gasteiger HA, Ross PN Jr, Cairns EJ (1993) LEIS and AES on sputtered and annealed polycrystalline Pt-Ru bulk alloys. Surf Sci 293(1–2):67–80

    Google Scholar 

  41. Mayrhofer KJJ, Hartl K, Juhart V, Arenz M (2009) Degradation of carbon-supported Pt bimetallic nanoparticles by surface segregation. J Am Chem Soc 131(45):16348–16349

    Google Scholar 

  42. Mayrhofer KJJ, Juhart V, Hartl K, Hanzlik M, Arenz M (2009) Adsorbate-induced surface segregation for core–shell nanocatalysts. Angew Chem Int Ed 48(19):3529–3531

    Google Scholar 

  43. Williams FL, Nason D (1974) Binary alloy surface compositions from bulk alloy thermodynamic data. Surf Sci 45(2):377–408

    Google Scholar 

  44. Tréglia G, Legrand B (1987) Surface-sandwich segregation in Pt-Ni and Ag-Ni alloys: two different physical origins for the same phenomenon. Phys Rev B 35(9):4338–4344

    Google Scholar 

  45. Teraoka Y (1990) Surface relaxation effects on surface segregation and order-disorder transition temperatures of binary alloys. Surf Sci 238(1–3):L453–L456

    Google Scholar 

  46. Daw MS, Baskes MI (1984) Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys Rev B 29(12):6443–6453

    Google Scholar 

  47. Foiles SM, Baskes MI, Daw MS (1986) Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys Rev B 33(12):7983–7991

    Google Scholar 

  48. Deng H, Hu W, Shu X, Zhao L, Zhang B (2002) Monte Carlo simulation of the surface segregation of Pt-Pd and Pt-Ir alloys with an analytic embedded-atom method. Surf Sci 517(1–3):177–185

    Google Scholar 

  49. Joubert HD, Swart HC, Terblans JJ (2004) Monte-Carlo program for simulating segregation and diffusion utilizing chemical potential calculations. Surf Interface Anal 36(11):1441–1448

    Google Scholar 

  50. Wang G, Van Hove MA, Ross PN, Baskes MI (2004) Monte Carlo simulations of segregation in Pt-Re catalyst nanoparticles. J Chem Phys 121(11):5410–5422

    Google Scholar 

  51. Wang G, Van Hove MA, Ross PN, Baskes MI (2005) Monte Carlo simulations of segregation in Pt-Ni catalyst nanoparticles. J Chem Phys 122(2):024706

    Google Scholar 

  52. Ruban AV, Skriver HL, Nørskov JK (1999) Surface segregation energies in transition-metal alloys. Phys Rev B 59(24):15990–16000

    Google Scholar 

  53. Løvvik OM (2005) Surface segregation in palladium based alloys from density-functional calculations. Surf Sci 583(1):100–106

    Google Scholar 

  54. Chepulskii RV, Butler WH, van de Walle A, Curtarolo S (2010) Surface segregation in nanoparticles from first principles: the case of FePt. Scr Mater 62(4):179–182

    Google Scholar 

  55. Ramirez-Caballero GE, Balbuena PB (2008) Surface segregation of core atoms in core-shell structures. Chem Phys Lett 456(1–3):64–67

    Google Scholar 

  56. Callejas-Tovar R, Balbuena PB (2008) Oxygen adsorption and surface segregation in (211) surfaces of Pt(shell)/M(core) and Pt3M (M=Co, Ir) alloys. Surf Sci 602(22):3531–3539

    Google Scholar 

  57. Ma Y, Balbuena PB (2008) Pt surface segregation in bimetallic Pt3M alloys: a density functional theory study. Surf Sci 602(1):107–113

    Google Scholar 

  58. Ma Y, Balbuena PB (2008) Surface properties and dissolution trends of Pt3M alloys in the presence of adsorbates. J Phys Chem C 112(37):14520–14528

    Google Scholar 

  59. Ma Y, Balbuena PB (2008) Kinetic model of surface segregation in Pt-based alloys. J Chem Theory Comput 4(12):1991–1995

    Google Scholar 

  60. Ma Y, Balbuena PB (2009) Surface segregation in bimetallic Pt3M (M = Fe, Co, Ni) alloys with adsorbed oxygen. Surf Sci 603(2):349–353

    Google Scholar 

  61. Hirunsit P, Balbuena PB (2009) Surface atomic distribution and water adsorption on Pt-Co alloys. Surf Sci 603(6):912–920

    Google Scholar 

  62. Adzic R, Zhang J, Sasaki K, Vukmirovic M, Shao M, Wang J, Nilekar A, Mavrikakis M, Valerio J, Uribe F (2007) Platinum monolayer fuel cell electrocatalysts. Top Catal 46(3):249–262

    Google Scholar 

  63. Martinez De La Hoz JM, Callejas Tovar R, Balbuena PB (2009) Size effect on the stability of Cu-Ag nanoalloys. Mol Simulat 35(10–11):785–794

    Google Scholar 

  64. Xiong SY, Qi WH, Huang BY, Wang MP (2011) Size-, shape- and composition-dependent alloying ability of bimetallic nanoparticles. Chemphyschem 12(7):1317–1324

    Google Scholar 

  65. Ferrando R, Jellinek J, Johnston RL (2008) Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem Rev 108(3):845–910

    Google Scholar 

  66. Baletto F, Ferrando R (2005) Structural properties of nanoclusters: energetic, thermodynamic, and kinetic effects. Rev Mod Phys 77(1):371–423

    Google Scholar 

  67. Delogu F (2010) Free energy differences between Ag-Cu nanophases with different chemical order. J Phys Chem C 114(47):19946–19951

    Google Scholar 

  68. Manikam VR, Cheong KY, Razak KA (2011) Chemical reduction methods for synthesizing Ag and Al nanoparticles and their respective nanoalloys. Mater Sci Eng B Adv Funct Solid State Mater 176(3):187–203

    Google Scholar 

  69. Cable RE, Schaak RE (2006) Reacting the unreactive: a toolbox of low-temperature solution-mediated reactions for the facile interconversion of nanocrystalline intermetallic compounds. J Am Chem Soc 128:9588–9589

    Google Scholar 

  70. Ewers TD, Sra AK, Norris BC, Cable RE, Cheng C-H, Shantz DF, Schaak RE (2005) Spontaneous hierarchical assembly of rhodium nanoparticles into spherical aggregates and superlattices. Chem Mater 17(3):514–520

    Google Scholar 

  71. Menning CA, Chen JG (2009) General trend for adsorbate-induced segregation of subsurface metal atoms in bimetallic surfaces. J Chem Phys 130(17):174709

    Google Scholar 

  72. Ramirez-Caballero GE, Ma Y, Callejas-Tovar R, Balbuena PB (2010) Surface segregation and stability of core-shell alloy catalysts for oxygen reduction in acid medium. Phys Chem Chem Phys 12:2209–2218

    Google Scholar 

  73. Balbuena PB, Callejas-Tovar R, Hirunsit P, de la Hoz JMM, Ma Y, Ramirez-Caballero GE (2012) Evolution of Pt and Pt-alloy catalytic surfaces under oxygen reduction reaction in acid medium. Top Catal 55(5–6):322–335

    Google Scholar 

  74. de Morais RF, Sautet P, Loffreda D, Franco AA (2011) A multiscale theoretical methodology for the calculation of electrochemical observables from ab initio data: application to the oxygen reduction reaction in a Pt(111)-based polymer electrolyte membrane fuel cell. Electrochim Acta 56(28):10842–10856

    Google Scholar 

  75. Nørskov JK, Bligaard T, Logadottir A, Bahn S, Hansen LB, Bollinger M, Bengaard H, Hammer B, Sljivancanin Z, Mavrikakis M, Xu Y, Dahl S, Jacobsen CJH (2002) Universality in heterogeneous catalysis. J Catal 209(2):275–278

    Google Scholar 

  76. Norskov JK, Scheffler M, Toulhoat H (2006) Density functional theory in surface science and heterogeneous catalysis. MRS Bull 31(9):669–674

    Google Scholar 

  77. Norskov JK, Bligaard T, Rossmeisl J, Christensen CH (2009) Towards the computational design of solid catalysts. Nat Chem 1(1):37–46

    Google Scholar 

  78. Greeley J, Norskov JK (2007) Large-scale, density functional theory-based screening of alloys for hydrogen evolution. Surf Sci 601(6):1590–1598

    Google Scholar 

  79. Hansen HA, Rossmeisl J, Norskov JK (2008) Surface Pourbaix diagrams and oxygen reduction activity of Pt, Ag and Ni(111) surfaces studied by DFT. Phys Chem Chem Phys 10(25):3722–3730

    Google Scholar 

  80. Ma Y, Balbuena PB (2007) Designing oxygen reduction catalysts: insights from metalloenzymes. Chem Phys Lett 440:130–133

    Google Scholar 

  81. Wang Y, Balbuena PB (2005) Design of oxygen reduction bimetallic catalysts: ab-initio derived thermodynamic guidelines. J Phys Chem B 109(40):18902–18906

    Google Scholar 

  82. Hammer B, Nørskov JK (1995) Electronic factors determining the reactivity of metal surfaces. Surf Sci 343(3):211–220

    Google Scholar 

  83. Santos E, Schmickler W (2006) d-Band catalysis in electrochemistry. Chemphyschem 7(11):2282–2285

    Google Scholar 

  84. Xu Y, Greeley J, Mavrikakis M (2005) Effect of subsurface oxygen on the reactivity of the Ag(111) surface. J Am Chem Soc 127(37):12823–12827

    Google Scholar 

  85. Xu Y, Ruban AV, Mavrikakis M (2004) Adsorption and dissociation of O2 on Pt-Co and Pt-Fe alloys. J Am Chem Soc 126(14):4717–4725

    Google Scholar 

  86. Greeley J, Jaramillo TF, Bonde J, Chorkendorff I, Norskov JK (2006) Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat Mater 5(11):909–913

    Google Scholar 

  87. Greeley J, Nørskov JK (2009) Combinatorial density functional theory-based screening of surface alloys for the oxygen reduction reaction. J Phys Chem C 113(12):4932–4939

    Google Scholar 

  88. Roques J, Anderson AB, Murthi VS, Mukerjee S (2005) Potential shift for OH(ads) formation on the Pt skin on Pt[sub 3]Co(111) electrodes in acid. J Electrochem Soc 152(6):E193–E199

    Google Scholar 

  89. Greeley J, Norskov JK (2007) Electrochemical dissolution of surface alloys in acids: thermodynamics trends from first principles calculations. Electrochim Acta 52:5829–5836

    Google Scholar 

  90. Greeley J (2010) Structural effects on trends in the deposition and dissolution of metal-supported metal adstructures. Electrochim Acta 55(20):5545–5550

    Google Scholar 

  91. Ma YG, Balbuena PB (2010) Role of iridium in Pt-based alloy catalysts for the ORR: surface adsorption and stabilization studies. J Electrochem Soc 157(6):B959–B963

    Google Scholar 

  92. Wang JX, Ma C, Choi Y, Su D, Zhu Y, Liu P, Si R, Vukmirovic MB, Zhang Y, Adzic RR (2011) Kirkendall effect and lattice contraction in nanocatalysts: a new strategy to enhance sustainable activity. J Am Chem Soc 133(34):13551–13557

    Google Scholar 

  93. Yin Y, Rioux RM, Erdonmez CK, Hughes S, Somorjai GA, Alivisatos AP (2004) Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science 304(5671):711–714

    Google Scholar 

  94. Jin fan H, Knez M, Scholz R, Nielsch K, Pippel E, Hesse D, Zacharias M, Gosele U (2006) Monocrystalline spinel nanotube fabrication based on the Kirkendall effect. Nat Mater 5(8):627–631

    Google Scholar 

  95. Callejas-Tovar R, Balbuena PB (2012) Effect of metal porosity on oxygen reduction reaction activity. J Phys Chem C 116(27):14414–14422

    Google Scholar 

  96. Borup R, Meyers J, Pivovar B, Kim YS, Mukundan R, Garland N, Myers D, Wilson M, Garzon F, Wood D, Zelenay P, More K, Stroh K, Zawodzinski T, Boncella J, McGrath JE, Inaba M, Miyatake K, Hori M, Ota K, Ogumi Z, Miyata S, Nishikata A, Siroma Z, Uchimoto Y, Yasuda K, Kimijima K-i, Iwashita N (2007) Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem Rev 107(10):3904–3951

    Google Scholar 

  97. Darling RM, Meyers JP (2003) Kinetic model of platinum dissolution in PEMFCs. J Electrochem Soc 150(11):A1523–A1527

    Google Scholar 

  98. Wang X, Kumar R, Myers DJ (2006) Effect of voltage on platinum dissolution. Electrochem Solid State Lett 9(5):A225–A227

    Google Scholar 

  99. Matsumoto M, Miyazaki T, Imai H (2011) Oxygen-enhanced dissolution of platinum in acidic electrochemical environments. J Phys Chem C 115(22):11163–11169

    Google Scholar 

  100. Hawkins JM, Weaver JF, Asthagiri A (2009) Density functional theory study of the initial oxidation of the Pt(111) surface. Phys Rev B 79(12):13

    Google Scholar 

  101. Gu Z, Balbuena PB (2007) Absorption of atomic oxygen into subsurfaces of Pt(100) and Pt(111): density functional theory study. J Phys Chem C 111(27):9877–9883

    Google Scholar 

  102. Gu Z, Balbuena PB (2007) Chemical environment effects on the atomic oxygen absorption into Pt(111) subsurfaces. J Phys Chem C 111(46):17388–17396

    Google Scholar 

  103. Gu Z, Balbuena PB (2008) Atomic oxygen absorption into Pt-based alloy subsurfaces. J Phys Chem C 112:5057–5065

    Google Scholar 

  104. Martínez de la Hoz JM, León-Quintero DF, Hirunsit P, Balbuena PB (2010) Evolution of a Pt (1 1 1) surface at high oxygen coverage in acid medium. Chem Phys Lett 498(4–6):328–333

    Google Scholar 

  105. Balbuena PB, Calvo SR, Callejas-Tovar R, Gu Z, Ramirez-Caballero GE, Hirunsit P, Ma Y (2010) Challenges in the design of active and durable alloy nanocatalysts for fuel cells. In: Balbuena PB, Subramanian VR (eds) Theory and experiment in electrocatalysis, vol 50, Modern aspects of electrochemistry. Springer, New York

    Google Scholar 

  106. Getman RB, Xu Y, Schneider WF (2008) Thermodynamics of environment-dependent oxygen chemisorption on Pt(111). J Phys Chem C 112(26):9559–9572. doi:10.1021/jp800905a

    Google Scholar 

  107. Hirunsit P, Balbuena PB (2010) Stability of Pt monolayers on Ir-Co cores with and without a Pd interlayer. J Phys Chem C 114(30):13055–13060

    Google Scholar 

  108. Tian F, Anderson AB (2011) Effective reversible potential, energy loss, and overpotential on platinum fuel cell cathodes. J Phys Chem C 115(10):4076–4088

    Google Scholar 

  109. Bandlow J, Kaghazchi P, Jacob T, Papp C, Trankenschuh B, Streber R, Lorenz MPA, Fuhrmann T, Denecke R, Steinruck HP (2011) Oxidation of stepped Pt(111) studied by x-ray photoelectron spectroscopy and density functional theory. Phys Rev B 83(17):174107

    Google Scholar 

  110. Jacob T (2007) Theoretical investigations on the potential-induced formation of Pt-oxide surfaces. J Electroanal Chem 607(1–2):158–166

    Google Scholar 

  111. Kitchin JR, Reuter K, Scheffler M (2008) Alloy surface segregation in reactive environments: first principles atomistic thermodynamics study of Ag3Pd(111) in oxygen atmospheres. Phys Rev B 77:075437

    Google Scholar 

  112. Reuter K, Scheffler M (2003) Composition and structure of the RuO2(110) surface in an O2 and CO environment: implications for the catalytic formation of CO2. Phys Rev B 68:045407

    Google Scholar 

  113. Tsuchiya M, Sankaranarayanan SKRS, Ramanathan S (2009) Photon-assisted oxidation and oxide thin film synthesis: a review. Prog Mater Sci 54(7):981–1057

    Google Scholar 

  114. Sankaranarayanan SKRS, Ramanathan S (2008) Molecular dynamics simulation study of nanoscale passive oxide growth on Ni-Al alloy surfaces at low temperatures. Phys Rev B 78(8):085420

    Google Scholar 

  115. Edvin L, Anders M, Jesper NA, Georg K, Michael S, Peter V (2006) Surface oxides on close-packed surfaces of late transition metals. J Phys Condens Matter 18(30):R481

    Google Scholar 

  116. Strasser P, Koh S, Anniyev T, Greeley J, More K, Yu CF, Liu ZC, Kaya S, Nordlund D, Ogasawara H, Toney MF, Nilsson A (2010) Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts. Nat Chem 2(6):454–460

    Google Scholar 

  117. Callejas-Tovar R, Balbuena PB (2011) Molecular dynamics simulations of surface oxide-water interactions on Pt(111) and Pt/PtCo/Pt3Co(111). Phys Chem Chem Phys 13(45):20461–20470

    Google Scholar 

  118. Callejas-Tovar R, Liao W, Martinez de la Hoz JM, Balbuena PB (2011) Molecular dynamics simulations of surface oxidation on Pt(111) and Pt/PtCo/Pt3Co(111). J Phys Chem C 115(10):4104–4113

    Google Scholar 

  119. Callejas-Tovar R, Liao W, Martinez JM, Balbuena PB (2012) Modeling oxidation of Pt-based alloy surfaces for fuel cell cathode electrocatalysts. In: Spivey JJ, Gupta M (eds) Royal Society of Chemistry Catalysis Series, vol 24. Royal Society of Chemistry, Cambridge, pp 323–357

    Google Scholar 

  120. Callejas-Tovar R, Liao W, Mera H, Balbuena PB (2011) Molecular dynamics simulations of surface oxidation on Pt and Pt/PtCo/Pt3Co nanoparticles supported over carbon. J Phys Chem C 115:23768–23777

    Google Scholar 

  121. Duh DM, Perera DN, Haymet ADJ (1995) Structure and properties of the CF1 central force model of water – integral-equation theory. J Chem Phys 102(9):3736–3746

    Google Scholar 

  122. Chen S, Gasteiger HA, Hayakawa K, Tada T, Shao-Horn Y (2010) Platinum-alloy cathode catalyst degradation in proton exchange membrane fuel cells: nanometer-scale compositional and morphological changes. J Electrochem Soc 157(1):A82–A97

    Google Scholar 

  123. Maillard F, Dubau L, Durst J, Chatenet M, André J, Rossinot E (2010) Durability of Pt3Co/C nanoparticles in a proton-exchange membrane fuel cell: direct evidence of bulk Co segregation to the surface. Electrochem Commun 12(9):1161–1164

    Google Scholar 

  124. Dubau L, Maillard F, Chatenet M, André J, Rossinot E (2010) Nanoscale compositional changes and modification of the surface reactivity of Pt3Co/C nanoparticles during proton-exchange membrane fuel cell operation. Electrochim Acta 56(2):776–783

    Google Scholar 

  125. Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81(25):2340–2361

    Google Scholar 

Download references

Acknowledgments

This work is supported by the Department of Energy, grant DE-FG02-05ER15729. The authors acknowledge the following institutions for providing computing resources that were essential in the research reported in this chapter: Texas A&M University Brazos HPC cluster, Texas A&M University Supercomputing Facility, Texas Advanced Computing Center (UT-Austin), Argonne National Laboratory, National Energy Research Scientific Computing Center (supported by the Office of Science of the US Department of Energy under Contract No. DE-AC03-76SF00098), and Army Research Laboratory (ARL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Perla B. Balbuena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Callejas-Tovar, R., Balbuena, P.B. (2013). Understanding Activity and Durability of Core/Shell Nanocatalysts for Fuel Cells. In: Shao, M. (eds) Electrocatalysis in Fuel Cells. Lecture Notes in Energy, vol 9. Springer, London. https://doi.org/10.1007/978-1-4471-4911-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4911-8_20

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4910-1

  • Online ISBN: 978-1-4471-4911-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics