Skip to main content

Process of Ultrasonic Machining

  • Reference work entry
  • First Online:
Handbook of Manufacturing Engineering and Technology

Abstract

Ultrasonic machining (USM) is a nontraditional mechanical machining process and can be used in many applications. This chapter presents USM and rotary ultrasonic machining (RUM), including definitions, machine elements, input variables and their effects, applications, and advantages and disadvantages. In addition, ultrasonic vibration-assisted (UV-A) machining processes will also be introduced. These processes include UV-A turning, UV-A drilling, UV-A milling, UV-A grinding, UV-A electrical discharged machining (EDM), and UV-A laser beam machining (LBM). The machining principles, input variables, and major features for each process will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adithan M, Venkatesh VC (1974) Parameter influence on tool wear in ultrasonic drilling. Tribol Int 7(6):260–264

    Article  Google Scholar 

  • Babitsky VI, Kalashnikov AN (2003) Ultrasonically assisted turning of aviation materials. J Mater Process Technol 132:3157–3167

    Article  Google Scholar 

  • Bangalone HMT (2001) Section 14: Non-traditional machining. In: Production technology. Tata McGraw-Hill Education, New Delhi

    Google Scholar 

  • Boothroyd G, Knight A (2006) Chapter 14: Nonconventional machining processes. In: Fundamentals of machining and machine tools. CRC press, Boca Roton

    Google Scholar 

  • Bradford JD, Richardson DB (1980) Production engineering technology, 3rd edn. Eacmillan, London

    Google Scholar 

  • Brehl DE, Dow TA (2008) Review of vibration-assisted machining. Precis Eng 32(3):153–172

    Article  Google Scholar 

  • Brown GC, Roney RM (1960) Machine device. US Patent 2,942,383

    Google Scholar 

  • Churi N (2010) Rotary ultrasonic machining of hard-to-machine materials. Ph.D. dissertation, Kansas State University

    Google Scholar 

  • Cleave D (1976) Ultrasonic gets bigger jobs in machining and welding. Iron Age Sept.: 69–72

    Google Scholar 

  • Cong WL (2013) Drilling of high-performance materials: experimental, numerical, and theoretical investigations. Ph.D. dissertation, Kansas State University

    Google Scholar 

  • Cusumano J, Huber J, Marshall KT (1974) Ultrasonic drilling of boron fiber composite. Mod Plast 52(6):88–90

    Google Scholar 

  • DeGarmo EP, Black JT, Khoser RA (2010) Materials and processes in manufacturing, 10th edn. Wiley, Hoboken

    Google Scholar 

  • Feng Q, Ren CZ, Pei ZJ (2012) Chapter 7: Ultrasonic vibration-assisted (UV-A) machining of composites. In: Machining technology for composite materials. Woodhead Publishing, Cambridge, UK

    Google Scholar 

  • Graff K (1975) Ultrasonic machining. Ultrasonic May: 103–109

    Google Scholar 

  • Hu P, Zhang JM, Pei ZJ, Treadwell C (2002) Modeling of material removal rate in rotary ultrasonic machining: designed experiments. J Mater Process Technol 129(1–3):339–344

    Article  Google Scholar 

  • Jana J, Satyanarayana A (1973) Production of fine diameter holes on ultrasonic drilling marching. J Inst Eng (India) Part MC Mech Eng Div 54:36–40

    Google Scholar 

  • Jiao Y, Liu WJ, Pei ZJ, Xin XJ, Treadwell C (2005a) Study on edge chipping in rotary ultrasonic machining on ceramics: an integration of designed experiment and FEM analysis. J Manuf Sci Eng 127(4):752–758

    Article  Google Scholar 

  • Jiao Y, Hu P, Pei ZJ, Treadwell C (2005b) Rotary ultrasonic machining of ceramics: design of experiments. Int J Manuf Technol Manag 7(2–4):192–206

    Google Scholar 

  • Kennedy DC, Grieve RJ (1975) Ultrasonic machining – a review. Prod Eng 54(9):481–486

    Article  Google Scholar 

  • Khanna N, Pei ZJ, Ferreira PM (1995) An experimental investigation of rotary ultrasonic grinding of ceramic disks. Technical papers of NAMRI/SME, pp 67–72

    Google Scholar 

  • Komaraiah M, Reddy PN (1993) A study on the influence of workpiece properties in ultrasonic machining. Int J Mach Tool Manuf 33(3):495–505

    Article  Google Scholar 

  • Lawn BR, Wilshaw R (1975) Review indentation fracture: principles and applications. J Mater Sci 10(6):1049–1081

    Article  Google Scholar 

  • Lawn BR, Evans AG, Marshall DB (1980) Elastic/plastic indentation damage in ceramics: the median/radial crack system. J Am Ceram Soc 63(9–10):574–581

    Article  Google Scholar 

  • Legge P (1964) Ultrasonic drilling of ceramics. Ind Diamond Rev 24(278):20–24

    Google Scholar 

  • Legge P (1966) Machining without abrasive slurry. Ultrasonics 2:157–162

    Article  Google Scholar 

  • Li ZC, Pei ZJ, Zeng WM, Kwon P, Treadwell C (2005) Preliminary experimental study of rotary ultrasonic machining on zirconia toughened alumina. Trans NAMRI/SME 33:89–96

    Google Scholar 

  • Li ZC, Cai LW, Pei ZJ, Treadwell C (2006) Edge-chipping reduction in rotary ultrasonic machining of ceramics: finite element analysis and experimental verification. Int J Mach Tool Manuf 46(12–13):1469–1477

    Article  Google Scholar 

  • Liu CS, Zhao B, Gao GF, Zhang XH (2005) Study on ultrasonic vibration drilling of particulate reinforced aluminum matrix composites. Key Eng Mater 291:447–452

    Article  Google Scholar 

  • Liu DF, Cong WL, Pei ZJ, Tang YJ (2012) A cutting force model for rotary ultrasonic machining of brittle materials. Int J Mach Tool Manuf 52(1):77–84

    Article  Google Scholar 

  • Markov A (1966) Ultrasonic machining of intractable materials (translated from Russian). Illife Books, London

    Google Scholar 

  • Markov AI (1977) Ultrasonic drilling and milling of hard non-metallic materials with diamond tools. Mach Tool 48(9):45–47

    Google Scholar 

  • Miller GE (1957) Special theory of ultrasonic machining. J Appl Phys 28(2):149

    Article  Google Scholar 

  • Miyamoto I, Asada S, Sano T, Ohmura E (2001) High speed drilling of thin silicon wafer by UV laser. In: Proceeding of international congress on applications of lasers and electro-optics, Jacksonville, Oct 15–18, pp 1612–1619

    Google Scholar 

  • Moore D (1986) Ultrasonic impact grinding. Carbide Tool J 11–12:21–23

    Google Scholar 

  • Moreland MA, Moore DO (1988) Versatile performance of ultrasonic machining, Ceram. Bulletin 67(6):1045–1047

    Google Scholar 

  • Neppiras EA, Foskett RD (1956) Ultrasonic machining II operation conditions and performance of ultrasonic drills. Phillips Tech Rev 18(2):368–379

    Google Scholar 

  • Neppire EA (1956) Report on ultrasonic. Mental Work Prod 100:1283–1288

    Google Scholar 

  • Nishimura G (1954) Ultrasonic machining Part I. J Fac Eng Tokyo Univ 24(3):65–100

    Google Scholar 

  • Pei ZJ, Ferreira PM, Kapoor SG, Haselkorn M (1995a) Rotary ultrasonic machining for face milling of ceramics. Int J Mach Tool Manuf 35(7):1033–1046

    Article  Google Scholar 

  • Pei ZJ, Prabhakar D, Ferreira PM, Haselkorn M (1995b) A mechanistic approach to the prediction of material removal rates in rotary ultrasonic machining. J Eng Ind 117(2):142–151

    Article  Google Scholar 

  • Rozenberg L, Kazantsev V, Makarov L, Yakhimovich D (1964) Ultrasonic cutting (translated from Russian). Consultants Bureau, New York

    Google Scholar 

  • Shen XH, Zhang J, Xing D, Zhao Y (2012) A study of surface roughness variation in ultrasonic vibration-assisted milling. J Adv Manuf Technol 58:533–561

    Article  Google Scholar 

  • Singal RK, Singal M, Singal R (2008) Fundamentals of machining and machine tools. I.K. International Publishing House, New Delhi

    Google Scholar 

  • Springborn RK (1967) Non-traditional machining processes. American Society of Tool and Manufacturing Engineering, Dearborn

    Google Scholar 

  • Thoe TB, Aspinwall DK, Wise MLH (1998) Review on ultrasonic machining. Int J Mach Tool Manuf 38(4):239–255

    Article  Google Scholar 

  • Tong H, Li Y, Wang Y (2008) Experimental research on vibration assisted EDM of micro-structures with non-circular cross-section. J Mater Process Technol 208:289–298

    Article  Google Scholar 

  • Xu XX, Mo Y, Liu CS, Zhao B (2009) Drilling force of SiC particle reinforced aluminum-matrix composites with ultrasonic vibration. Key Eng Mater 416:243–247

    Article  Google Scholar 

  • Ya G, Qin HW, Yang SC, Xu YW (2002) Analysis of the rotary ultrasonic machining mechanism. J Mater Process Technol 129(1–3):182–185

    Article  Google Scholar 

  • Zeng WM, Li ZC, Pei ZJ, Treadwell C (2004) Experimental investigation into rotary ultrasonic machining of alumina. In: Proceedings of IMECE, Anaheim, Nov 13–19

    Google Scholar 

  • Zhao B, Wu YG, Jiao GF (2008) Research on micro-mechanism of nano-composite ceramic in two-dimensional ultrasound grinding. Key Eng Mater 359:344–348

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weilong Cong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this entry

Cite this entry

Cong, W., Pei, Z. (2015). Process of Ultrasonic Machining. In: Nee, A. (eds) Handbook of Manufacturing Engineering and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-4670-4_76

Download citation

Publish with us

Policies and ethics