Skip to main content

Engineering Luciferases for Assays and Imaging

  • Chapter
  • First Online:
Engineering in Translational Medicine

Abstract

Luciferases have served a number of purposes in biomedical applications, including within reporter gene and split reporter complementation assays. These proteins, however, have not evolved for the purpose of biomedical research, and it is not surprising that the utility and robustness of these assays can be improved by protein engineering of the luciferase. In this chapter, we provide an overview of luciferases, protein engineering, and how protein engineering is applied to luciferases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee J (2008) Bioluminescence: the first 3000 years. J Siberian Federal Univ Biol 1(3):194–205

    Google Scholar 

  2. Prescher JA, Contag CH (2010) Guided by the light: visualizing biomolecular processes in living animals with bioluminescence. Curr Opin Chem Biol 14(1):80–89. doi:S1367-5931(09)00183-5 [pii] 10.1016/j.cbpa.2009.11.001

  3. Widder EA (2010) Bioluminescence in the ocean: origins of biological, chemical, and ecological diversity. Science 328(5979):704–708. doi:10.1126/science.1174269

    Article  Google Scholar 

  4. Viviani VR (2002) The origin, diversity, and structure function relationships of insect luciferases. Cell Mol Life Sci 59(11):1833–1850

    Article  Google Scholar 

  5. Fraga H, Fernandes D, Fontes R, Esteves da Silva JC (2005) Coenzyme A affects firefly luciferase luminescence because it acts as a substrate and not as an allosteric effector. FEBS J 272(20):5206–5216. doi:10.1111/j.1742-4658.2005.04895.x

    Article  Google Scholar 

  6. Inouye S (2010) Firefly luciferase: an adenylate-forming enzyme for multicatalytic functions. Cell Mol Life Sci 67(3):387–404. doi:10.1007/s00018-009-0170-8

    Article  Google Scholar 

  7. Haddock SHD, Case JF (1999) Bioluminescence spectra of shallow and deep-sea gelatinous zooplankton: ctenophores, medusae and siphonophores. Mar Biol 133(3):571–582

    Article  Google Scholar 

  8. Vassel N, Cox CD, Naseem R, Morse V, Evans RT, Power RL, Brancale A, Wann KT, Campbell AK (2012) Enzymatic activity of albumin shown by coelenterazine chemiluminescence. Lumin J Biol Chem Lumin 27(3):234–241. doi:10.1002/bio.2357

    Article  Google Scholar 

  9. Inouye S, Sahara-Miura Y, Sato J, Iimori R, Yoshida S, Hosoya T (2013) Expression, purification and luminescence properties of coelenterazine-utilizing luciferases from Renilla, Oplophorus and Gaussia: comparison of substrate specificity for C2-modified coelenterazines. Protein Expr Purif 88(1):150–156. doi:10.1016/j.pep.2012.12.006

    Article  Google Scholar 

  10. Loening AM, Fenn TD, Wu AM, Gambhir SS (2006) Consensus guided mutagenesis of Renilla luciferase yields enhanced stability and light output. Protein Eng Des Sel 19(9):391–400. doi:10.1093/protein/gzl023

    Article  Google Scholar 

  11. Stepanyuk GA, Xu H, Wu CK, Markova SV, Lee J, Vysotski ES, Wang BC (2008) Expression, purification and characterization of the secreted luciferase of the copepod Metridia longa from Sf9 insect cells. Protein Expr Purif 61(2):142–148. doi:10.1016/j.pep.2008.05.013

    Article  Google Scholar 

  12. Goerke AR, Loening AM, Gambhir SS, Swartz JR (2008) Cell-free metabolic engineering promotes high-level production of bioactive Gaussia princeps luciferase. Metab Eng 10(3–4):187–200. doi:10.1016/j.ymben.2008.04.001

    Article  Google Scholar 

  13. Takenaka Y, Yamaguchi A, Tsuruoka N, Torimura M, Gojobori T, Shigeri Y (2012) Evolution of bioluminescence in marine planktonic copepods. Mol Biol Evol 29(6):1669–1681. doi:10.1093/molbev/mss009

    Article  Google Scholar 

  14. Inouye S, Sahara Y (2008) Identification of two catalytic domains in a luciferase secreted by the copepod Gaussia princeps. Biochem Biophys Res Commun 365(1):96–101. doi:10.1016/j.bbrc.2007.10.152

    Article  Google Scholar 

  15. Tzertzinis G, Schildkraut E, Schildkraut I (2012) Substrate cooperativity in marine luciferases. PLoS ONE 7(6):e40099. doi:10.1371/journal.pone.0040099

    Article  Google Scholar 

  16. Inouye S, Sasaki S (2007) Overexpression, purification and characterization of the catalytic component of Oplophorus luciferase in the deep-sea shrimp Oplophorus gracilirostris. Protein Expr Purif 56(2):261–268. doi:10.1016/j.pep.2007.08.002

    Article  Google Scholar 

  17. Hall MP, Unch J, Binkowski BF, Valley MP, Butler BL, Wood MG, Otto P, Zimmerman K, Vidugiris G, Machleidt T, Robers MB, Benink HA, Eggers CT, Slater MR, Meisenheimer PL, Klaubert DH, Fan F, Encell LP, Wood KV (2012) Engineered luciferase reporter from a deep sea shrimp utilizing a novel imidazopyrazinone substrate. ACS Chem Biol 7(11):1848–1857. doi:10.1021/cb3002478

    Article  Google Scholar 

  18. Nakajima Y, Kobayashi K, Yamagishi K, Enomoto T, Ohmiya Y (2004) cDNA cloning and characterization of a secreted luciferase from the luminous Japanese ostracod Cypridina noctiluca. Biosci Biotechnol Biochem 68(3):565–570

    Article  Google Scholar 

  19. Suzuki C, Nakajima Y, Akimoto H, Wu C, Ohmiya Y (2005) A new additional reporter enzyme, dinoflagellate luciferase, for monitoring of gene expression in mammalian cells. Gene 344:61–66. doi:10.1016/j.gene.2004.09.028

    Article  Google Scholar 

  20. Close DM, Patterson SS, Ripp S, Baek SJ, Sanseverino J, Sayler GS (2010) Autonomous bioluminescent expression of the bacterial luciferase gene cassette (lux) in a mammalian cell line. PLoS ONE 5(8):e12441. doi:10.1371/journal.pone.0012441

    Article  Google Scholar 

  21. Ramanathan R, Burbelo PD, Groot S, Iadarola MJ, Neva FA, Nutman TB (2008) A luciferase immunoprecipitation systems assay enhances the sensitivity and specificity of diagnosis of Strongyloides stercoralis infection. J Infect Dis 198(3):444–451. doi:10.1086/589718

    Article  Google Scholar 

  22. Ronaghi M (2001) Pyrosequencing sheds light on DNA sequencing. Genome Res 11(1):3–11

    Article  Google Scholar 

  23. Badran AH, Furman JL, Ma AS, Comi TJ, Porter JR, Ghosh I (2011) Evaluating the global CpG methylation status of native DNA utilizing a bipartite split-luciferase sensor. Anal Chem 83(18):7151–7157. doi:10.1021/ac2015239

    Article  Google Scholar 

  24. Jester BW, Gaj A, Shomin CD, Cox KJ, Ghosh I (2012) Testing the promiscuity of commercial kinase inhibitors against the AGC kinase group using a split-luciferase screen. J Med Chem 55(4):1526–1537. doi:10.1021/jm201265f

    Article  Google Scholar 

  25. Shekhawat SS, Campbell ST, Ghosh I (2011) A comprehensive panel of turn-on caspase biosensors for investigating caspase specificity and caspase activation pathways. Chem Biochem 12(15):2353–2364. doi:10.1002/cbic.201100372

    Google Scholar 

  26. Anderson JM, Cormier MJ (1976) Transductive coupling in bioluminescence: effects of monovalent cations and ionophores on the calcium-triggered luminescence of Renilla lumisomes. Biochem Biophys Res Commun 68(4):1234–1241

    Article  Google Scholar 

  27. Loening AM, Gambhir SS (2006) Technologies for imaging with bioluminescently labeled probes. Thesis (Ph D), Stanford University

    Google Scholar 

  28. Loening AM, Wu AM, Gambhir SS (2007) Red-shifted Renilla reniformis luciferase variants for imaging in living subjects. Nat Methods 4(8):641–643. doi:10.1038/nmeth1070

    Article  Google Scholar 

  29. White PJ, Squirrell DJ, Arnaud P, Lowe CR, Murray JA (1996) Improved thermostability of the North American firefly luciferase: saturation mutagenesis at position 354. Biochem J 319(2):343–350

    Google Scholar 

  30. Shapiro E, Lu C, Baneyx F (2005) A set of multicolored Photinus pyralis luciferase mutants for in vivo bioluminescence applications. Protein Eng Des Sel 18(12):581–587. doi:gzi066 [pii] 10.1093/protein/gzi066

  31. Koksharov MI, Ugarova NN (2011) Thermostabilization of firefly luciferase by in vivo directed evolution. Protein Eng Des Sel 24(11):835–844. doi:10.1093/protein/gzr044

    Article  Google Scholar 

  32. Fujii H, Noda K, Asami Y, Kuroda A, Sakata M, Tokida A (2007) Increase in bioluminescence intensity of firefly luciferase using genetic modification. Anal Biochem 366(2):131–136. doi:10.1016/j.ab.2007.04.018

    Article  Google Scholar 

  33. Koksharov MI, Ugarova NN (2008) Random mutagenesis of Luciola mingrelica firefly luciferase. Mutant enzymes with bioluminescence spectra showing low pH sensitivity. Biochemistry (Mosc) 73(8):862–869

    Article  Google Scholar 

  34. Li X, Nakajima Y, Niwa K, Viviani VR, Ohmiya Y (2010) Enhanced red-emitting railroad worm luciferase for bioassays and bioimaging. Protein Sci 19(1):26–33. doi:10.1002/pro.279

    Google Scholar 

  35. Koksharov MI, Ugarova NN (2011) Triple substitution G216N/A217L/S398M leads to the active and thermostable Luciola mingrelica firefly luciferase. Photochem Photobiol Sci 10(6):931–938. doi:10.1039/c0pp00318b

    Article  Google Scholar 

  36. Branchini BR, Southworth TL, Murtiashaw MH, Boije H, Fleet SE (2003) A mutagenesis study of the putative luciferin binding site residues of firefly luciferase. Biochemistry 42(35):10429–10436. doi:10.1021/bi030099x

    Article  Google Scholar 

  37. Nazari M, Hosseinkhani S (2011) Design of disulfide bridge as an alternative mechanism for color shift in firefly luciferase and development of secreted luciferase. Photochem Photobiol Sci 10(7):1203–1215. doi:10.1039/c1pp05012e

    Article  Google Scholar 

  38. Law GH, Gandelman OA, Tisi LC, Lowe CR, Murray JA (2006) Mutagenesis of solvent-exposed amino acids in Photinus pyralis luciferase improves thermostability and pH-tolerance. Biochem J 397(2):305–312. doi:10.1042/BJ20051847

    Article  Google Scholar 

  39. Maguire CA, van der Mijn JC, Degeling MH, Morse D, Tannous BA (2011) Codon-optimized Luciola italica luciferase variants for mammalian gene expression in culture and in vivo. Mol Imaging. doi:10.2310/7290.2011.00022

    Google Scholar 

  40. Branchini BR, Ablamsky DM, Davis AL, Southworth TL, Butler B, Fan F, Jathoul AP, Pule MA (2010) Red-emitting luciferases for bioluminescence reporter and imaging applications. Anal Biochem 396(2):290–297. doi:10.1016/j.ab.2009.09.009

    Article  Google Scholar 

  41. Tannous BA, Kim DE, Fernandez JL, Weissleder R, Breakefield XO (2005) Codon-optimized Gaussia luciferase cDNA for mammalian gene expression in culture and in vivo. Mol Ther J Am Soc Gene Ther 11(3):435–443. doi:10.1016/j.ymthe.2004.10.016

    Article  Google Scholar 

  42. Zhuang Y, Butler B, Hawkins E, Paguio A, Orr L, Wood MG, Wood KV (2001) New synthetic Renilla gene and assay system increase expression, reliability and sensitivity. Promega Notes, vol 79

    Google Scholar 

  43. Kanno A, Yamanaka Y, Hirano H, Umezawa Y, Ozawa T (2007) Cyclic luciferase for real-time sensing of caspase-3 activities in living mammals. Angew Chem Int Ed Engl 46(40):7595–7599. doi:10.1002/anie.200700538

    Article  Google Scholar 

  44. Worley CK, Ling R, Callis J (1998) Engineering in vivo instability of firefly luciferase and Escherichia coli beta-glucuronidase in higher plants using recognition elements from the ubiquitin pathway. Plant Mol Biol 37(2):337–347

    Article  Google Scholar 

  45. Leclerc GM, Boockfor FR, Faught WJ, Frawley LS (2000) Development of a destabilized firefly luciferase enzyme for measurement of gene expression. Biotechniques 29(3):590–591, 594–596, 598 passim

    Google Scholar 

  46. Santos EB, Yeh R, Lee J, Nikhamin Y, Punzalan B, Punzalan B, La Perle K, Larson SM, Sadelain M, Brentjens RJ (2009) Sensitive in vivo imaging of T cells using a membrane-bound Gaussia princeps luciferase. Nat Med 15(3):338–344. doi:10.1038/nm.1930

    Article  Google Scholar 

  47. Stepanyuk GA, Unch J, Malikova NP, Markova SV, Lee J, Vysotski ES (2010) Coelenterazine-v ligated to Ca2+-triggered coelenterazine-binding protein is a stable and efficient substrate of the red-shifted mutant of Renilla muelleri luciferase. Anal Bioanal Chem 398(4):1809–1817. doi:10.1007/s00216-010-4106-9

    Article  Google Scholar 

  48. Cali JJ, Niles A, Valley MP, O’Brien MA, Riss TL, Shultz J (2008) Bioluminescent assays for ADMET. Expert Opin Drug Metab Toxicol 4(1):103–120. doi:10.1517/17425255.4.1.103

    Article  Google Scholar 

  49. Woo J, Howell MH, von Arnim AG (2008) Structure-function studies on the active site of the coelenterazine-dependent luciferase from Renilla. Protein Sci 17(4):725–735. doi:10.1110/ps.073355508

    Article  Google Scholar 

  50. Markova SV, Burakova LP, Vysotski ES (2012) High-active truncated luciferase of copepod Metridia longa. Biochem Biophys Res Commun 417(1):98–103. doi:10.1016/j.bbrc.2011.11.063

    Article  Google Scholar 

  51. Kim SB, Suzuki H, Sato M, Tao H (2011) Superluminescent variants of marine luciferases for bioassays. Anal Chem 83(22):8732–8740. doi:10.1021/ac2021882

    Article  Google Scholar 

  52. Hall M, Gruber M, Hannah RR, Jennens-Clough ML, Wood KV (1998) Stabilization of firefly luciferase using directed evolution. In: Roda A, Pazzagli M, Kricka L, Stanley P (eds) Bioluminescence and Chemiluminescence: Perspectives for the 21st Century. Wiley, Chichester, UK

    Google Scholar 

  53. Branchini BR, Ablamsky DM, Murtiashaw MH, Uzasci L, Fraga H, Southworth TL (2007) Thermostable red and green light-producing firefly luciferase mutants for bioluminescent reporter applications. Anal Biochem 361(2):253–262. doi:10.1016/j.ab.2006.10.043

    Article  Google Scholar 

  54. Baggett B, Roy R, Momen S, Morgan S, Tisi L, Morse D, Gillies RJ (2004) Thermostability of firefly luciferases affects efficiency of detection by in vivo bioluminescence. Mol Imaging 3(4):324–332. doi:10.1162/1535350042973553

    Article  Google Scholar 

  55. Walls ZF (2008) Molecular imaging of gene expression at the level of RNA in living animals

    Google Scholar 

  56. Imani M, Hosseinkhani S, Ahmadian S, Nazari M (2010) Design and introduction of a disulfide bridge in firefly luciferase: increase of thermostability and decrease of pH sensitivity. Photochem Photobiol Sci 9(8):1167–1177. doi:10.1039/c0pp00105h

    Article  Google Scholar 

  57. Nazari M, Hosseinkhani S, Hassani L (2012) Step-wise addition of disulfide bridge in firefly luciferase controls color shift through a flexible loop: a thermodynamic perspective. Photochem Photobiol Sci. doi:10.1039/c2pp25140j

  58. Riahi-Madvar A, Hosseinkhani S (2009) Design and characterization of novel trypsin-resistant firefly luciferases by site-directed mutagenesis. Protein Eng Des Sel 22(11):655–663. doi:10.1093/protein/gzp047

    Article  Google Scholar 

  59. Liu J, Escher A (1999) Improved assay sensitivity of an engineered secreted Renilla luciferase. Gene 237(1):153–159

    Article  Google Scholar 

  60. Wiles S, Ferguson K, Stefanidou M, Young DB, Robertson BD (2005) Alternative luciferase for monitoring bacterial cells under adverse conditions. Appl Environ Microbiol 71(7):3427–3432. doi:10.1128/AEM.71.7.3427-3432.2005

    Article  Google Scholar 

  61. Tafreshi NKH, Sadeghizadeh M, Emamzadeh R, Ranjbar B, Naderi-Manesh H, Hosseinkhani S (2008) Site-directed mutagenesis of firefly luciferase: implication of conserved residue(s) in bioluminescence emission spectra among firefly luciferases. Biochem J 412(1):27–33. doi:BJ20070733 [pii] 10.1042/BJ20070733

    Google Scholar 

  62. Branchini BR, Southworth TL, Khattak NF, Michelini E, Roda A (2005) Red- and green-emitting firefly luciferase mutants for bioluminescent reporter applications. Anal Biochem 345(1):140–148. doi:10.1016/j.ab.2005.07.015

    Article  Google Scholar 

  63. Tisi LC, White PJ, Squirrell DJ, Murphy MJ, Lowe CR, Murray JA (2002) Development of a thermostable firefly luciferase. Anal Chim Acta 457(1):115–123

    Google Scholar 

  64. Kajiyama N, Nakano E (1993) Thermostabilization of firefly luciferase by a single amino acid substitution at position 217. Biochemistry 32(50):13795–13799

    Article  Google Scholar 

  65. Moradi A, Hosseinkhani S, Naderi-Manesh H, Sadeghizadeh M, Alipour BS (2009) Effect of charge distribution in a flexible loop on the bioluminescence color of firefly luciferases. Biochemistry 48(3):575–582. doi:10.1021/bi802057w

    Article  Google Scholar 

  66. Tafreshi NKH, Hosseinkhani S, Sadeghizadeh M, Sadeghi M, Ranjbar B, Naderi-Manesh H (2007) The influence of insertion of a critical residue (Arg356) in structure and bioluminescence spectra of firefly luciferase. J Biol Chem 282(12):8641–8647. doi:10.1074/jbc.M609271200

    Article  Google Scholar 

  67. Loening AM, Dragulescu-Andrasi A, Gambhir SS (2010) A red-shifted Renilla luciferase for transient reporter-gene expression. Nat Methods 7(1):5–6. doi:10.1038/nmeth0110-05

    Article  Google Scholar 

  68. Sherf BA, Wood KV (1994) Firefly luciferase engineered for improved genetic reporting. Promega Notes, vol 49

    Google Scholar 

  69. Paguio A, Almond B, Fan F, Stecha PF, Garvin D, Wood MG, Wood KV (2005) pGL4 vectors: a new generation of luciferase reporter vectors. Promega Notes, vol 89

    Google Scholar 

  70. Pichler A, Prior JL, Piwnica-Worms D (2004) Imaging reversal of multidrug resistance in living mice with bioluminescence: MDR1 P-glycoprotein transports coelenterazine. Proc Natl Acad Sci USA 101(6):1702–1707. doi:10.1073/pnas.0304326101

    Article  Google Scholar 

  71. Gil JS, Machado HB, Herschman HR (2012) A method to rapidly and accurately compare the relative efficacies of non-invasive imaging reporter genes in a mouse model and its application to luciferase reporters. Mol Imaging Biol 14(4):462–471. doi:10.1007/s11307-011-0515-1

    Article  Google Scholar 

  72. Ward WW, Cormier MJ (1979) An energy transfer protein in coelenterate bioluminescence. Characterization of the Renilla green-fluorescent protein. J Biol Chem 254(3):781–788

    Google Scholar 

  73. Hoshino H, Nakajima Y, Ohmiya Y (2007) Luciferase-YFP fusion tag with enhanced emission for single-cell luminescence imaging. Nat Methods 4(8):637–639. doi:10.1038/nmeth1069

    Article  Google Scholar 

  74. Saito K, Chang YF, Horikawa K, Hatsugai N, Higuchi Y, Hashida M, Yoshida Y, Matsuda T, Arai Y, Nagai T (2012) Luminescent proteins for high-speed single-cell and whole-body imaging. Nat Commun 3:1262. doi:10.1038/ncomms2248

    Article  Google Scholar 

  75. Ozawa T, Kaihara A, Sato M, Tachihara K, Umezawa Y (2001) Split luciferase as an optical probe for detecting protein-protein interactions in mammalian cells based on protein splicing. Anal Chem 73(11):2516–2521

    Article  Google Scholar 

  76. Luker KE, Smith MC, Luker GD, Gammon ST, Piwnica-Worms H, Piwnica-Worms D (2004) Kinetics of regulated protein–protein interactions revealed with firefly luciferase complementation imaging in cells and living animals. Proc Natl Acad Sci USA 101(33):12288–12293. doi:10.1073/pnas.0404041101

    Article  Google Scholar 

  77. Paulmurugan R, Gambhir SS (2007) Combinatorial library screening for developing an improved split-firefly luciferase fragment-assisted complementation system for studying protein-protein interactions. Anal Chem 79(6):2346–2353. doi:10.1021/ac062053q

    Article  Google Scholar 

  78. Kim SB, Otani Y, Umezawa Y, Tao H (2007) Bioluminescent indicator for determining protein-protein interactions using intramolecular complementation of split click beetle luciferase. Anal Chem 79(13):4820–4826. doi:10.1021/ac0621571

    Article  Google Scholar 

  79. Misawa N, Kafi AK, Hattori M, Miura K, Masuda K, Ozawa T (2010) Rapid and high-sensitivity cell-based assays of protein-protein interactions using split click beetle luciferase complementation: an approach to the study of G-protein-coupled receptors. Anal Chem 82(6):2552–2560. doi:10.1021/ac100104q

    Article  Google Scholar 

  80. Paulmurugan R, Gambhir SS (2003) Monitoring protein-protein interactions using split synthetic Renilla luciferase protein-fragment-assisted complementation. Anal Chem 75(7):1584–1589

    Article  Google Scholar 

  81. Kaihara A, Kawai Y, Sato M, Ozawa T, Umezawa Y (2003) Locating a protein-protein interaction in living cells via split Renilla luciferase complementation. Anal Chem 75(16):4176–4181

    Article  Google Scholar 

  82. Stefan E, Aquin S, Berger N, Landry CR, Nyfeler B, Bouvier M, Michnick SW (2007) Quantification of dynamic protein complexes using Renilla luciferase fragment complementation applied to protein kinase A activities in vivo. Proc Natl Acad Sci USA 104(43):16916–16921. doi:10.1073/pnas.0704257104

    Article  Google Scholar 

  83. Ishikawa H, Meng F, Kondo N, Iwamoto A, Matsuda Z (2012) Generation of a dual-functional split-reporter protein for monitoring membrane fusion using self-associating split GFP. Protein Eng Des Sel 25(12):813–820. doi:10.1093/protein/gzs051

    Article  Google Scholar 

  84. Remy I, Michnick SW (2006) A highly sensitive protein–protein interaction assay based on Gaussia luciferase. Nat Methods 3(12):977–979. doi:10.1038/nmeth979

    Article  Google Scholar 

  85. Kim SB, Sato M, Tao H (2009) Split Gaussia luciferase-based bioluminescence template for tracing protein dynamics in living cells. Anal Chem 81(1):67–74. doi:10.1021/ac801658y

    Google Scholar 

  86. Harwood KR, Mofford DM, Reddy GR, Miller SC (2011) Identification of mutant firefly luciferases that efficiently utilize aminoluciferins. Chem Biol 18(12):1649–1657. doi:10.1016/j.chembiol.2011.09.019

    Article  Google Scholar 

  87. Hattori N, Kajiyama N, Maeda M, Murakami S (2002) Mutant luciferase enzymes from fireflies with increased resistance to benzalkonium chloride. Biosci Biotechnol Biochem 66(12):2587–2593

    Article  Google Scholar 

  88. Hart RC, Matthews JC, Hori K, Cormier MJ (1979) Renilla reniformis bioluminescence: luciferase-catalyzed production of nonradiating excited states from luciferin analogues and elucidation of the excited state species involved in energy transfer to Renilla green fluorescent protein. Biochemistry 18(11):2204–2210

    Article  Google Scholar 

  89. Matthews JC, Hori K, Cormier MJ (1977) Purification and properties of Renilla reniformis luciferase. Biochemistry 16(1):85–91

    Article  Google Scholar 

  90. Inouye S, Shimomura O (1997) The use of Renilla luciferase, Oplophorus luciferase, and apoaequorin as bioluminescent reporter protein in the presence of coelenterazine analogues as substrate. Biochem Biophys Res Commun 233(2):349–353. doi:10.1006/bbrc.1997.6452

    Google Scholar 

  91. de Wet JR, Wood KV, Helinski DR, DeLuca M (1985) Cloning of firefly luciferase cDNA and the expression of active luciferase in Escherichia coli. Proc Natl Acad Sci USA 82(23):7870–7873

    Article  Google Scholar 

  92. Viviani VR, Bechara EJ, Ohmiya Y (1999) Cloning, sequence analysis, and expression of active Phrixothrix railroad-worms luciferases: relationship between bioluminescence spectra and primary structures. Biochemistry 38(26):8271–8279. doi:10.1021/bi9900830

    Article  Google Scholar 

  93. Wood KV, Lam YA, Seliger HH, McElroy WD (1989) Complementary DNA coding click beetle luciferases can elicit bioluminescence of different colors. Science 244(4905):700–702

    Article  Google Scholar 

  94. Lorenz WW, McCann RO, Longiaru M, Cormier MJ (1991) Isolation and expression of a cDNA encoding Renilla reniformis luciferase. Proc Natl Acad Sci USA 88(10):4438–4442

    Article  Google Scholar 

  95. Verhaegent M, Christopoulos TK (2002) Recombinant Gaussia luciferase. Overexpression, purification, and analytical application of a bioluminescent reporter for DNA hybridization. Anal Chem 74(17):4378–4385

    Article  Google Scholar 

  96. Markova SV, Golz S, Frank LA, Kalthof B, Vysotski ES (2004) Cloning and expression of cDNA for a luciferase from the marine copepod Metridia longa. A novel secreted bioluminescent reporter enzyme. J Biol Chem 279(5):3212–3217. doi:10.1074/jbc.M309639200

    Article  Google Scholar 

  97. Inouye S, Watanabe K, Nakamura H, Shimomura O (2000) Secretional luciferase of the luminous shrimp Oplophorus gracilirostris: cDNA cloning of a novel imidazopyrazinone luciferase(1). FEBS Lett 481(1):19–25

    Article  Google Scholar 

  98. Thompson EM, Nagata S, Tsuji FI (1989) Cloning and expression of cDNA for the luciferase from the marine ostracod Vargula hilgendorfii. Proc Natl Acad Sci USA 86(17):6567–6571

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zachary F. Walls .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Loening, A.M., Walls, Z.F. (2014). Engineering Luciferases for Assays and Imaging. In: Cai, W. (eds) Engineering in Translational Medicine. Springer, London. https://doi.org/10.1007/978-1-4471-4372-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4372-7_8

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4371-0

  • Online ISBN: 978-1-4471-4372-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics