Skip to main content

Nanomaterials from Renewable Resources

  • Chapter
  • First Online:
Nanomaterials: A Danger or a Promise?

Abstract

Among the 12 principles that define green chemistry, the use of renewable resources is of paramount importance in the perspective of building a sustainable society. The effort that has been put, in the past 25 years, into the research and development of new materials with controlled nanoscale structures and properties has not specifically taken into account the possibility of employing natural resources. This trend has, nevertheless, changed in the past 10 years. In this chapter, some examples of nanomaterials and nanoscale-related processes are overviewed through the prism of sustainability. In particular, it will be shown how natural resources, from proteins to carbohydrates and more complex organisms, can be employed as precursors in the synthesis of nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, New York

    Google Scholar 

  2. EC regulation N 1907/2006

    Google Scholar 

  3. http://www.materbi.com/NorthAmerica/default.asp?id=414

  4. Dahl JA, Maddux BLS, Hutchison JE (2007) Chem Rev 107:2228–2269

    Article  Google Scholar 

  5. Ozin GA, Arsenault AC (2005) Nanochemistry, a chimica approach to nanomaterials. The Royal Society of Chemistry, Cambridge, UK

    Google Scholar 

  6. Mohanty AK, Misra M, Drzal LT (2002) J Polym Environ 10:19–26

    Article  Google Scholar 

  7. http://biorefinery-euroview.eu/biorefinery/public/index.html

  8. Clark JH (2007) J Chem Technol Biotechnol 82:603–609

    Article  Google Scholar 

  9. Clark JH, Budarin V, Deswarte FEI, Hardy JJE, Kerton FM, Hunt AJ, Luque R, Macquarrie DJ, Milkowski K, Rodriguez A, Samuel O, Tavener SJ, White RJ, Wilson AJ (2006) Green Chem 8:853–860

    Article  Google Scholar 

  10. Drumright RE, Gruber PR, Henton DE (2000) Adv Mater 12:1841–1846

    Article  Google Scholar 

  11. Akaraonye E, Keshavarz T, Roy I (2010) J Chem Technol Biotechnol 85:732–743

    Article  Google Scholar 

  12. Robertson ML, Hillmyer MA, Mortamet A-C, Ryan AJ (2010) MRS Bull 35:194–200

    Article  Google Scholar 

  13. Ravenelle F, Marchessault RH (2002) Biomacromolecules 3:1057–1064

    Article  Google Scholar 

  14. Oh JK (2011) Soft Matter 7:5096

    Article  Google Scholar 

  15. Van Tomme SR, Mens A, van Nostrum CF, Hennink WE (2008) Biomacromolecules 9:158

    Article  Google Scholar 

  16. L’Actualité Chimique, Nov–Dec 2002, 6–87; in French

    Google Scholar 

  17. Bachelder EM, Beaudette TT, Broaders KE, Dashe J, Fréchet JMJ J Am Chem Soc doi:10.1021/ja803947s

  18. Caruso RA, Schattka JH (2000) Adv Mater 12:1921–1923

    Article  Google Scholar 

  19. Gu Y, Huang J (2009) J Mater Chem 19:3764–3770

    Article  Google Scholar 

  20. Arias JL, Fernández MS (2008) Chem Rev 108:4475–4482

    Article  Google Scholar 

  21. White RJ, Budarin VL, Clark JH (2008) ChemSusChem 1:408–411

    Article  Google Scholar 

  22. Klemm D, Kramer F, Morits S, Lindstroem T, Ankerfors M, Gray D, Dorris A (2011) Angew Chem Int Ed 50:5438–5466

    Article  Google Scholar 

  23. Kroto HW, Heath JR, O’Brien SC, Curl et RF, Smalley RE (1985) Nature 318:162–163

    Article  Google Scholar 

  24. Ryoo R, Joo SH, Jun S (1999) J Phys Chem B 103:7743

    Article  Google Scholar 

  25. Tanaka S, Nishiyama N, Egashira Y, Ueyama K (2005) Chem Commun 16:2125

    Article  Google Scholar 

  26. Budarin V, Clark JH, Hardy JJ, Luque R, Milkowski K, Taverner SJ, Wilson AJ (2006) Angew Chem Int Ed 45:3782–3786

    Article  Google Scholar 

  27. Titirici M-M, Antonietti M (2010) Chem Soc Rev 39:103–116

    Article  Google Scholar 

  28. Titirici M-M, Antonietti M, Baccile N (2008) Green Chem 10:1204

    Article  Google Scholar 

  29. Falco C, Baccile N, Titirici M-M (2011) Green chem 13:3273−3281

    Article  Google Scholar 

  30. Sun XM, Li YD (2004) Angew Chem Int Ed 43:597–601

    Article  Google Scholar 

  31. Qian H-S, Yu S-H, Luo L-B, Gong J-Y, Fei L-F, Liu X-M (2006) Chem Mater 18:2102–2108

    Article  Google Scholar 

  32. Endo M, Takeuchi K, Ahm Kim Y, Park KC, Ichiki T, Hayashi T, Fukuyo T, Iinou S, Su DS, Terrones M, Dresselhaus MS (2008) ChemSusChem 1:820–822

    Article  Google Scholar 

  33. Liu HP, Ye T, Mao CD (2007) Angew Chem Int Ed 46:6473–6475

    Article  Google Scholar 

  34. Nune SK, Chanda N, Shukla R, Katti K, Kulkarni RR, Thilakavathy S, Mekapothula S, Kannan R, Katti KV (2009) J Mater Chem 19:2912–2920

    Article  Google Scholar 

  35. Engelbrekt C, Sørensen KH, Zhang J, Welinder AC, Jensen PS, Ulstrup J (2009) J Mater Chem 19:7839–7847

    Article  Google Scholar 

  36. Raveendran P, Fu J, Wallen SL (2003) J Am Chem Soc 125:13940–13941

    Article  Google Scholar 

  37. Liu J, Sun Z, Deng Y, Zou Y, Li C, Guo X, Xiong L, Gao Y, Li F, Zhao D (2009) Angew Chem Int Ed 48:5875–5879

    Article  Google Scholar 

  38. Park HS, Lee Y-C, Choi BG, Choi YS, Yanga J-W, Hong WH (2009) Chem Commun 27:4058–4060

    Article  Google Scholar 

  39. Ayele DW, Chen H-M, Su W-N, Pan C-J, Chen L-Y, Chou H-L, Cheng J-H, Hwang B-J, Lee J-F (2011) Chem Eur J 17:5737–5744

    Article  Google Scholar 

  40. Zhu D, Jiang X, Zhao C, Sun X, Zhang J, Zhu J–J (2010) Chem Commun 46:5226–5228

    Article  Google Scholar 

  41. Myakonkaya O, Hu Z, Nazar MF, Eastoe J (2010) Chem Europ J 16:11784–11790

    Article  Google Scholar 

  42. Narayanan KB, Sakthivel N (2010) Adv Coll Interf ci 156:1–13

    Article  Google Scholar 

  43. Mao C, Solis DJ, Reiss BD, Kottmann S, Sweeney R, Georgiou G, Iverson B, Belcher AM (2004) Science 303:213–215

    Article  Google Scholar 

  44. Evans DJ (2008) J Mater Chem 18:3746–3754

    Article  Google Scholar 

  45. Knez M, Bittner AM, Boes F, Wege C, Jeske H, Maiss E, Kern K (2003) Nano Lett 3:1079–1082

    Article  Google Scholar 

  46. Baccile N, Babonneau F, Thomas B, Coradin T (2009) J Mater Chem 19:8537–8559

    Article  Google Scholar 

  47. Simmel FC (2008) Angew Chem Int Ed 47:5884–5887

    Article  Google Scholar 

  48. Rothemund PWK (2006) Nature 440:297–302

    Article  Google Scholar 

  49. He Y, Ye T, Su M, Zhang C, Ribbe AE, Jiang W, Mao CD (2008) Nature 452:198–202

    Article  Google Scholar 

  50. Whyburn GP, Li Y, Huang Y (2008) J Mater Chem 18:3755–3762

    Article  Google Scholar 

  51. Perico A, Ciferri A (2009) Chem Europ J 15:6312–6320

    Article  Google Scholar 

  52. Kjellin M, Johansson I (2010) Surfactants from renewable resources, Wiley Series in Renewable Resources. Wiley, Chichester

    Google Scholar 

  53. Vemula PK, John G (2008) Acc Chem Res 41:769–782

    Article  Google Scholar 

  54. John G, Masuda M, Okada Y, Yase K, Shimizu T (2001) Adv Mater 13:715–718

    Article  Google Scholar 

  55. Cordier P, Tournilhac F, Soulié-Ziakovic C, Leibler L (2008) Nature 451:977

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niki Baccile .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Baccile, N. (2013). Nanomaterials from Renewable Resources. In: Brayner, R., Fiévet, F., Coradin, T. (eds) Nanomaterials: A Danger or a Promise?. Springer, London. https://doi.org/10.1007/978-1-4471-4213-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4213-3_13

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4212-6

  • Online ISBN: 978-1-4471-4213-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics