Skip to main content

Modeling Thermo-Oxidative Aging and Degradation of Composites

  • Chapter
  • First Online:

Abstract

Long-term durability and use-life of polymeric matrix composites operating at elevated temperatures are limited by their thermo-oxidative stability. Although weight loss testing is traditionally performed to characterize the oxidative degradation of composite systems, the results of such tests are neither translatable to other composites architectures with the same constituents nor scalable to longer exposure times or higher temperatures. A comprehensive modeling framework for understanding the morphological changes in the composites and degradation of the mechanical performance is described in this chapter. A thermo-chemo-mechanics model that defines and utilizes an oxidation state parameter for each constituent is formulated. The effect of oxygen diffusion in the fiber and fiber–matrix interphase on the oxidation of the composite is simula-ted. The role of damage in accelerating the oxidation growth along the fiber direction leading to high orthotropy in lamina oxidation is also addressed. The stiffness changes due to oxidation as well as the strains induced due to shrinkage are explicitly modeled leading to a detailed simulation of oxidation growth around discrete cracks. Oxidation growth in laminated composites is predicted using microscale and homogenization techniques. The model is applied to study the long-term thermal oxidation of polyimide composites.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Schoeppner, G., G. Tandon, and K. Pochiraju, Predicting Thermooxidative Degradation and Performance of High-Temperature Polymer Matrix Composites, in Multiscale Modeling and Simulation of Composite Materials and Structures, Y. Kwon, D. Allen, and R. Talreja, Editors. 2008, Springer US. p. 359–462.

    Chapter  Google Scholar 

  2. Verdu, S. and J. Verdu, A new kinetic model for polypropylene thermal oxidation at moderate temperatures. Macromolecules, 1997. 30: p. 2262–2267.

    Article  CAS  Google Scholar 

  3. Tandon, G.P., K.V. Pochiraju, and G.A. Schoeppner, Modeling of oxidative development in PMR-15 resin. Polymer Degradation and Stability, 2006. 91(8): p. 1861–1869.

    Article  CAS  Google Scholar 

  4. Pochiraju, K.V. and G.P. Tandon, Modeling thermo-oxidative layer growth in high-temperature resins. Journal of Engineering Materials and Technology, Transactions of the ASME, 2006. 128(1): p. 107–116.

    Article  CAS  Google Scholar 

  5. Weitsman, Y., Stress assisted diffusion in elastic and viscoelastic materials. Journal of the Mechanics and Physics of Solids, 1987. 35(1): p. 73–94.

    Article  Google Scholar 

  6. Audouin, L., et al., Review of role of oxygen diffusion in polymer aging kinetic and mechanical aspects. Journal of Materials Science, 1994. 29: p. 569–583.

    Article  CAS  Google Scholar 

  7. Verdu S, V.J., A new kinetic model for polypropylene thermal oxidation at moderate temperatures. Macromolecules, 1997. 30: p. 2262–2267.

    Article  CAS  Google Scholar 

  8. Colin, X., C. Marais, and J. Verdu, Thermal oxidation kinetics for a poly (bismaleimide). Journal of Applied Polymer Science, 2001. 82: p. 3418–3430.

    Article  CAS  Google Scholar 

  9. Colin, X., C. Marais, and J. Verdu, A new method for predicting the thermal oxidation of thermoset matrices: application to an amine cross-linked epoxy. Polymer Testing, 2001. 20: p. 795–803.

    Article  CAS  Google Scholar 

  10. Colin, X. and J. Verdu, Strategy for studying thermal oxidation of organic matrix composites. Composites Science and Technology, 2005. 65: p. 411–419.

    Article  CAS  Google Scholar 

  11. Lafarie-Frenot, M.C., et al., Thermo-oxidation behaviour of composite materials at high temperatures: A review of research activities carried out within the COMEDI program. Polymer Degradation and Stability, 2010. 95(6): p. 965–974.

    Article  CAS  Google Scholar 

  12. Dhami, T.L., L.M. Manocha, and O.P. Bahl, Oxidation behaviour of pitch based carbon fibers. Carbon, 1991. 29(1): p. 51–60.

    Article  CAS  Google Scholar 

  13. Eckstein, B.H., The oxidation of carbon fibers in air between 230 and 375. Fiber Science and Technology, 1981. 14: p. 139–156.

    Article  CAS  Google Scholar 

  14. McManus, H.L., B.J. Foch, and R.A. Cunningham, Mechanism-based modeling of long-term degradation. Journal of Composites Technology & Research, 2000. 22: p. 146–152.

    Article  CAS  Google Scholar 

  15. Schieffer, A., J.F. Maire, and D. Levique, A coupled analysis of mechanical behavior and aging for polymer-matrix composites. Composites Science and Technology, 2002. 62: p. 543–549.

    Article  CAS  Google Scholar 

  16. Abdeljaoued, K., Thermal oxidation of PMR-15 polymer used as a matrix in composite materials reinforced with carbon fibers. 1999, Ecole Nationale Superieure des Arts et Metiers, Paris.

    Google Scholar 

  17. Colin, X., C. Marais, and J. Verdu, Kinetic modeling and simulation of gravimetric curves: application to the oxidation of bismaleimide and epoxy resins. Polymer Degradation and Stability, 2002. 78: p. 545–553.

    Article  CAS  Google Scholar 

  18. Serp, P. and J.L. Figueiredo, An Investigation of vapor-grown carbon fiber behavior towards air oxidation. Carbon, 1997. 35(5): p. 675–683.

    Article  CAS  Google Scholar 

  19. Sullivan, R., A model for the oxidation of carbon silicon carbide composite structures. Carbon, 2005. 43(2): p. 275–285.

    Article  CAS  Google Scholar 

  20. Glime, W.H. and J.D. Cawley, Oxidation of carbon fibers and films in ceramic matrix composites: A weak link process. Carbon, 1995. 33(8): p. 1053–1060.

    Article  CAS  Google Scholar 

  21. Baker, A.A., et al., Oxidation of Aluminum-Coated Carbon Fibres and Carbon-Aluminum Composites. Fiber Science and Technology, 1972. 5: p. 285.

    Article  CAS  Google Scholar 

  22. Piquero, T., et al., Influence of carbide coatings on the oxidation behavior of carbon fibers. Carbon, 1995. 33(4): p. 455–467.

    Article  CAS  Google Scholar 

  23. Wang, H., P. Gao, and Z. Jin, Preparation and oxidation behavior of three-dimensional braided carbon fiber coated by SiC. Materials Letters, 2005. 59(4): p. 486–490.

    Article  CAS  Google Scholar 

  24. Singer, L.U. and S. Mitchell, Diffusion of oxygen into pitch. Carbon, 1997. 35(5): p. 599–604.

    Article  CAS  Google Scholar 

  25. Tang, L.Q., et al., Three-dimensional transient mold cooling analysis based on galerkin finite element formulation with a matrix-free conjugate gradient technique. International Journal for Numerical Methods in Engineering, 1996. 39(18): p. 3049–3064.

    Article  Google Scholar 

  26. Heath, M.T., Scientific Computing: An Introductory Survey (2nd edn). 2002: McGraw-Hill: New York.

    Google Scholar 

  27. Shewchuk, J.R. An Introduction to the Conjugate Gradient Method without the Agonizing Pain 1994 [cited 2007 April 30, 2007]; Available from: http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf.

  28. Barrett, R., et al., Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods (2nd edn).. 1993, Society for Industrial and Applied Mathematics.

    Google Scholar 

  29. Jimack, P.K. and N. Touheed, Developing parallel finite element software using MPI. In High Performance Computing for Computational Mechanics. B.H.V. Topping and L. Lammer (editors) 2000: Saxe-Coburg Publications, p. 15–38.

    Google Scholar 

  30. Bellenger, V., J. Decelle, and N. Huet, Ageing of a carbon epoxy composite for aeronautic applications. Composites Part B: Engineering, 2005. 36(3): p. 189–194.

    Article  Google Scholar 

  31. Yu, Y.T. and K. Pochiraju, Characterization of temperature-dependent moisture diffusivity in PMR-15 resin. Journal of Applied Polymer Science, 2007. 106(2): p. 1281–1290.

    Article  CAS  Google Scholar 

  32. Ripberger, E.R., G.P. Tandon, and G.A. Schoeppner. Charaterizing the Oxidative Degradation of PMR-15 Resin. in Sampe 2004 Symposium and Exhibition. 2004. Long Beach, CA: SAMPE.

    Google Scholar 

  33. Schoeppner, G.A., G.P. Tandon, and E.R. Ripberger, Anisotropic oxidation and weight loss in PMR-15 composites. Composites Part A: Applied Science and Manufacturing, 2007. 38: p. 890–904.

    Article  Google Scholar 

  34. Pochiraju, K. and G.P. Tandon, Interaction of oxidation and damage in high temperature polymeric matrix composites. Composites Part A: Applied Science and Manufacturing, 2009. 40(12): p. 1931–1940.

    Article  Google Scholar 

  35. Tandon, G.P., Characterization of Thermo-oxidation in Laminated and Textile Composites, in Long-Term Durability of Polymeric Matrix Composites, K. Pochiraju, G.P. Tandon, and G.A. Schoeppner, Editors. 2011, Springer Science+Business Media, LLC, New York, NY.

    Google Scholar 

  36. Pochiraju, K.V., G.P. Tandon, and G.A. Schoeppner, Evolution of stress and deformations in high-temperature polymer matrix composites during thermo-oxidative aging. Mechanics of Time-Dependent Materials, 2008. 12(1): p. 45–68.

    Article  CAS  Google Scholar 

  37. Oliver, W.C. and G.M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. Journal of Materials Research, 2004. 19(1): p. 3–20

    Article  CAS  Google Scholar 

  38. Wise, J., K.T. Gillen, and R.L. Clough, Quantitative model for the time development of diffusion-limited oxidation profiles. Polymer, 1997. 38: p. 1929–1944.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

A major portion of this work has been funded by Air Force Office of Scientific Research (AFOSR: Drs. Charles Lee and J. Harrison, Program Managers) and Air Force Research Laboratory at Wright Patterson AFB. Collaboration and interactions with Dr. G. P. Tandon, Dr. G. Schoeppner, Dr. R. Hall, and Prof. J. Whitcomb are deeply appreciated. I gratefully acknowledge the efforts of my students, Alan An, Dr. Eva Yu, and Andong Xu, which led to several insights presented in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kishore V. Pochiraju .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Pochiraju, K.V. (2012). Modeling Thermo-Oxidative Aging and Degradation of Composites. In: Pochiraju, K., Tandon, G., Schoeppner, G. (eds) Long-Term Durability of Polymeric Matrix Composites. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9308-3_10

Download citation

Publish with us

Policies and ethics