Skip to main content

Cnidarian Immunity: A Tale of Two Barriers

  • Chapter
Invertebrate Immunity

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 708))

Abstract

The phylum Cnidaria is one of the earliest branches in the animal tree of life providing crucial insights into the early evolution of immunity. The diversity in cnidarian life histories and habitats raises several important issues relating to immunity. First, in the absence of specific immune cells, cnidarians must have effective mechanisms to defend against microbial pathogens. Second, to maintain tissue integrity, colonial forms have to rely on their capacity of self/nonself discrimination to rapidly detect approaching allogeneic cells as foreign and to eliminate them. And third, since cnidarians are colonized by complex bacterial communities and in many cases are home to algal symbionts, successful growth means for cnidarians to be able to distinguish between beneficial symbionts and pathogenic intruders. The aim of this chapter is to review the experimental evidence for innate immune reactions in Cnidaria. We show that in these diploblastic animals consisting of only two cell layers; the epithelial cells are able to mediate all innate immune responses. The endodermal epithelium appears as a chemical barrier employing antimicrobial peptides while the ectodermal epithelium is a physicochemical barrier supported by a glycocalix. Microbial recognition is mediated by pattern recognition receptors such as Toll- and Nod-like receptors. Together, the data support the hypothesis that the establishment of epithelial barriers represents an important step in evolution of host defense in eumetazoan animals more than 600 million years ago.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Putnam NH, Srivastava M, Hellsten U et al. Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 2007; 317:86–94.

    Article  PubMed  CAS  Google Scholar 

  2. Dunn CW, Hejnol A, Matus DQ et al. Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 2008; 452:745–749.

    Article  PubMed  CAS  Google Scholar 

  3. Schierwater B, Eitel M, Jakob W et al. Concatenated analysis sheds light on early metazoan evolution and fuels a modern “urmetazoon” hypothesis. PLoS biology 2009; 7:e20.

    Article  PubMed  Google Scholar 

  4. Philippe H, Derelle R, Lopez P et al. Phylogenomics revives traditional views on deep animal relationships. Curr Biol 2009; 19:706–712.

    Article  PubMed  CAS  Google Scholar 

  5. Kortschak RD, Samuel G, Saint R et al. EST analysis of the cnidarian Acropora millepora reveals extensive gene loss and rapid sequence divergence in the model invertebrates. Curr Biol 2003; 13:2190–2195.

    Article  PubMed  CAS  Google Scholar 

  6. Kusserow A, Pang K, Sturm C et al. Unexpected complexity of the Wnt gene family in a sea anemone. Nature 2005; 433:156–160.

    Article  PubMed  CAS  Google Scholar 

  7. Miller DJ, Ball EE, Technau U. Cnidarians and ancestral genetic complexity in the animal kingdom. Trends Genet 2005; 21:536–539.

    Article  PubMed  CAS  Google Scholar 

  8. Technau U, Rudd S, Maxwell P et al. Maintenance of ancestral complexity and nonmetazoan genes in two basal cnidarians. Trends Genet 2005; 21:633–639.

    Article  PubMed  CAS  Google Scholar 

  9. Wittlieb J, Khalturin K, Lohmann JU et al. Transgenic Hydra allow in vivo tracking of individual stem cells during morphogenesis. Proc Natl Acad Sci USA 2006; 103:6208–6211.

    Article  PubMed  CAS  Google Scholar 

  10. Renfer E, Amon-Hassenzahl A, Steinmetz PR et al. A muscle-specific transgenic reporter line of the sea anemone, Nematostella vectensis. Proc Natl Acad Sci USA 2010; 107:104–108.

    Article  PubMed  CAS  Google Scholar 

  11. Saina M, Genikhovich G, Renfer E et al. BMPs and chordin regulate patterning of the directive axis in a sea anemone. Proc Natl Acad Sci USA 2009; 106:18592–18597.

    Article  PubMed  CAS  Google Scholar 

  12. Rentzsch F, Fritzenwanker JH, Scholz CB et al. FGF signalling controls formation of the apical sensory organ in the cnidarian Nematostella vectensis. Development 2008; 135:1761–1769.

    Article  PubMed  CAS  Google Scholar 

  13. Chapman JA, Kirkness EF, Simakov O et al. The Dynamic Genome of Hydra. Nature 2010; 464(7288):592–596

    Article  PubMed  CAS  Google Scholar 

  14. Hemmrich G, Bosch TC. Compagen, a comparative genomics platform for early branching metazoan animals, reveals early origins of genes regulating stem-cell differentiation. Bioessays 2008; 30:1010–1018.

    Article  PubMed  CAS  Google Scholar 

  15. Miller DJ, Hemmrich G, Ball EE et al. The innate immune repertoire in Cnidaria—ancestral complexity and stochastic gene loss. Genome Biology 2007; 8

    Google Scholar 

  16. Reitzel AM, Sullivan JC, Traylor-Knowles N et al. Genomic survey of candidate stress-response genes in the estuarine anemone Nematostella vectensis. Biol Bull 2008; 214:233–254.

    Article  PubMed  Google Scholar 

  17. Nehyba J, Hrdlickova R, Bose HR. Dynamic evolution of immune system regulators: the history of the interferon regulatory factor family. Mol Biol Evol 2009; 26:2539–2550.

    Article  PubMed  CAS  Google Scholar 

  18. Domazet-Loso T, Tautz D. An ancient evolutionary origin of genes associated with human genetic diseases. Mol Biol Evol 2008; 25:2699–2707.

    Article  PubMed  CAS  Google Scholar 

  19. Bosch TCG, David CN. Immunocompetence in Hydra: Epithelial cells recognize self-nonself and react against it. J Exp Biol 1986; 238:225–234.

    Google Scholar 

  20. Bosch TC, Augustin R, Anton-Erxleben F et al. Uncovering the evolutionary history of innate immunity: the simple metazoan Hydra uses epithelial cells for host defence. Dev Comp Immunol 2009; 33:559–569.

    Article  PubMed  CAS  Google Scholar 

  21. Jung S, Dingley AJ, Augustin R et al. Hydramacin-1, structure and antibacterial activity of a protein from the basal metazoan Hydra. J Biol Chem 2009; 284:1896–1905.

    Article  PubMed  CAS  Google Scholar 

  22. Augustin R, Siebert S, Bosch TC. Identification of a kazal-type serine protease inhibitor with potent anti-staphylococcal activity as part of Hydra’s innate immune system. Dev Comp Immunol 2009; 33:830–837.

    Article  PubMed  CAS  Google Scholar 

  23. Mydlarz LD, Holthouse SF, Peters EC et al. Cellular responses in sea fan corals: granular amoebocytes react to pathogen and climate stressors. PloS one 2008; 3:e1811.

    Article  PubMed  Google Scholar 

  24. Bosch TC. Why polyps regenerate and we don’t: towards a cellular and molecular framework for Hydra regeneration. Dev Biol 2007; 303:421–433.

    Article  PubMed  CAS  Google Scholar 

  25. McFall-Ngai M, Nyholm SV, Castillo MG. The role of the immune system in the initiation and persistence of the Euprymna scolopes-Vibrio fischeri symbiosis. Semin Immunol 2009.

    Google Scholar 

  26. Ainsworth TD, Fine M, Blackall LL et al. Fluorescence in situ hybridization and spectral imaging of coral-associated bacterial communities. Appl Environ Microbiol 2006; 72:3016–3020.

    Article  PubMed  CAS  Google Scholar 

  27. Dinsdale EA, Edwards RA, Hall D et al. Functional metagenomic profiling of nine biomes. Nature 2008; 452:629–632.

    Article  PubMed  CAS  Google Scholar 

  28. Dinsdale EA, Pantos O, Smriga S et al. Microbial ecology of four coral atolls in the Northern Line Islands. PloS one 2008; 3:e1584.

    Article  PubMed  Google Scholar 

  29. Breitbart M, Bhagooli R, Griffin S et al. Microbial communities associated with skeletal tumors on Porites compressa. FEMS Microbiol Lett 2005; 243:431–436.

    Article  PubMed  CAS  Google Scholar 

  30. Frias-Lopez J, Zerkle AL, Bonheyo GT et al. Partitioning of bacterial communities between seawater and healthy, black band diseased and dead coral surfaces. Appl Environ Microbiol 2002; 68:2214–2228.

    Article  PubMed  CAS  Google Scholar 

  31. Rohwer F, Breitbart M, Jara J et al. Diversity of bacteria associated with the Caribbean coral Montastraea franksi. Coral Reefs 2001; 20:85–91.

    Article  Google Scholar 

  32. Rohwer F, Seguritan V, Azam F et al. Diversity and distribution of coral-associated bacteria. Mar Ecol Prog Ser 2002; 243:1–10.

    Article  Google Scholar 

  33. Yokouchi H, Fukuoka Y, Mukoyama D et al. Whole-metagenome amplification of a microbial community associated with scleractinian coral by multiple displacement amplification using phi 29 polymerase. Environ Microbiol 2006; 8:1155–1163.

    Article  PubMed  CAS  Google Scholar 

  34. Littman RA, Willis BL, Bourne DG. Bacterial communities of juvenile corals infected with different Symbiodinium (dinoflagellate) clades. Ma Ecol Prog Ser 2009; 389:45–59.

    Article  Google Scholar 

  35. Ritchie KB. Regulation of microbial populations by coral surface mucus and mucus-associated bacteria. Mar Ecol Prog Ser 2006; 322:1–14.

    Article  CAS  Google Scholar 

  36. Fraune S, Bosch TCG. Long-term maintenance of species-specific bacterial microbiota in the basal metazoan Hydra. Proc Natl Acad Sci USA 2007; 104:13146–13151.

    Article  PubMed  CAS  Google Scholar 

  37. Fraune S, Abe Y, Bosch TCG. Disturbing epithelial homeostasis in the metazoan Hydra leads to drastic changes in associated microbiota. Environ Microbiol 2009; 11:2361–2369.

    Article  PubMed  CAS  Google Scholar 

  38. Dunn SR, Thomason JC, Le Tissier MD et al. Heat stress induces different forms of cell death in sea anemones and their endosymbiotic algae depending on temperature and duration. Cell Death Diff 2004; 11:1213–1222.

    Article  CAS  Google Scholar 

  39. Weis VM. Cellular mechanisms of Cnidarian bleaching: stress causes the collapse of symbiosis. J Exp Biol 2008; 211:3059–3066.

    Article  PubMed  CAS  Google Scholar 

  40. Palmer CV, Bythell JC, Willis BL. Levels of immunity parameters underpin bleaching and disease susceptibility of reef corals. FASEB J.

    Google Scholar 

  41. Rodriguez-Lanetty M, Phillips WS, Weis VM. Transcriptome analysis of a cnidarian-dinoflagellate mutualism reveals complex modulation of host gene expression. BMC Genomics 2006; 7:23.

    Article  PubMed  Google Scholar 

  42. Barneah O, Benayahu Y, Weis V. Comparative proteomics of symbiotic and aposymbiotic juvenile soft corals. Mar Biotechnol 2006; 8:11–16.

    Article  PubMed  CAS  Google Scholar 

  43. Voolstra CR, Schwarz JA, Schnetzer J et al. The host transcriptome remains unaltered during the establishment of coral-algal symbioses. Mol Ecol 2009; 18:1823–1833.

    Article  PubMed  CAS  Google Scholar 

  44. Weis VM, Allemand D. What Determines Coral Health? Science 2009; 324:1153–1155.

    Article  PubMed  CAS  Google Scholar 

  45. Muscatine L, Lenhoff HM. Symbiosis of hydra with algae. J Gen Microbiol 1963; 32:6.

    Google Scholar 

  46. O’Brien TL. Inhibition of vacuolar membrane-fusion by intracellular symbiotic algae in hydra-viridis (florida strain). J Exp Zool 1982; 223:211–218.

    Article  PubMed  Google Scholar 

  47. Thorington G, Margulis L. Hydra-Viridis—Transfer of Metabolites between Hydra and Symbiotic Algae. Biol Bull 1981; 160:175–188.

    Article  PubMed  CAS  Google Scholar 

  48. Habetha M, Anton-Erxleben F, Neumann K et al. The Hydra viridis/Chlorella symbiosis. Growth and sexual differentiation in polyps without symbionts. Zoology 2003; 106:101–108.

    Article  PubMed  Google Scholar 

  49. Beutler B. Innate immunity: an overview. Mol Immunol 2004; 40:845–859.

    Article  PubMed  CAS  Google Scholar 

  50. Rosenstiel P, Philipp EER, Schreiber S et al. Evolution and Function of Innate Immune Receptors—Insights from Marine Invertebrates. J Innate Immun 2009; 1:291–300.

    Article  PubMed  CAS  Google Scholar 

  51. Lange C, Hemmrich G, Klostermeier U et al. Complex repertoire of NOD-like receptors at the base of animal evolution 2010:submitted.

    Google Scholar 

  52. Schroder K, Zhou RB, Tschopp J. The NLRP3 Inflammasome: A Sensor for Metabolic Danger? Science 2010; 327:296–300.

    Article  PubMed  CAS  Google Scholar 

  53. Khalturin K, Hemmrich G, Fraune S et al. More than just orphans: are taxonomically-restricted genes important in evolution? Trends Genet 2009; 25:404–413.

    Article  PubMed  CAS  Google Scholar 

  54. Ovchinnikova TV, Balandin SV, Aleshina GM et al. Aurelin, a novel antimicrobial peptide from jellyfish Aurelia aurita with structural features of defensins and channel-blocking toxins. Biochem Biophys Res Commun 2006; 348:514–523.

    Article  PubMed  CAS  Google Scholar 

  55. Augustin R, Anton-Erxleben F, Jungnickel S et al. Activity of the novel peptide arminin against multiresistant human pathogens shows the considerable potential of phylogenetically ancient organisms as drug sources. Antimicrob Agents and Chemother 2009; 53:5245–5250.

    Article  CAS  Google Scholar 

  56. Dishaw LJ, Litman GW. Invertebrate Allorecognition: The Origins of Histocompatibility. Current Biology 2009; 19:R286–R8.

    Article  PubMed  CAS  Google Scholar 

  57. Buss LW, Grosberg RK. Morphogenetic Basis for Phenotypic Differences in Hydroid Competitive Behavior. Nature 1990; 343:63–66.

    Article  Google Scholar 

  58. Hauenschild C. Genetische und entwichlungphysiologische Untersuchungen ueber Intersexualitaet und Gewebevertraeglichkeit bei Hydractinia echinata Flem. Wilhelm Roux’s Arch Entwicklungsmech Org 1954; 147:1–41.

    Article  Google Scholar 

  59. Buss LW, Shenk MA. Hydroid Allorecognition Regulates Competition at Both the Level of the Colony and at the Level of the Cell Lineage. Defense Molecules 1990; 121:85–105

    Google Scholar 

  60. Lange R, Plickert G, Muller WA. Histoincompatibility in a Low Invertebrate, Hydractinia-Echinata—Analysis of the Mechanism of Rejection. J Exp Zool 1989; 249:284–292.

    Article  Google Scholar 

  61. Yund PO, Cunningham CW, Buss LW. Recruitment and Postrecruitment Interactions in a Colonial Hydroid. Ecology 1987; 68:971–982.

    Article  Google Scholar 

  62. Buss LW, Yund PO. A Comparison of Recent and Historical Populations of the Colonial Hydroid Hydractinia. Ecology 1988; 69:646–654.

    Article  Google Scholar 

  63. Yund PO, Parker HM. Population-Structure of the Colonial Hydroid Hydractinia Sp-Nov C in the Gulf of Maine. J Exp Mar Biol Ecol 1989; 125:63–82.

    Article  Google Scholar 

  64. Buss LW. Somatic-Cell Parasitism and the Evolution of Somatic Tissue Compatibility. Proc Natl Acad Sci USA 1982; 79:5337–5531.

    Article  PubMed  CAS  Google Scholar 

  65. Hauenschild C. Uber Die Vererbung Einer Gewebevertraglichkeits-Eigenschaft Bei Dem Hydroidpolypen Hydractinia-Echinata. Zeitschrift Fur Naturforschung Part B-Chemie Biochemie Biophysik Biologie Und Verwandten Gebiete 1956; 11:132–138.

    Google Scholar 

  66. Ivker FB. Hierarchy of Histo-Incompatibility in Hydractinia-Echinata. Biol Bull 1972; 143:162–174.

    Article  Google Scholar 

  67. Mokady O, Buss LW. Transmission genetics of allorecognition in Hydractinia symbiolongicarpus (Cnidaria:Hydrozoa). Genetics 1996; 143:823–827.

    PubMed  CAS  Google Scholar 

  68. Cadavid LF. Self-discrimination in colonial invertebrates: genetic control of allorecognition in the hydroid Hydractinia. Dev Comp Immunol 2004; 28:871–879.

    Article  PubMed  CAS  Google Scholar 

  69. Powell AE, Nicotra ML, Moreno MA et al. Differential effect of allorecognition loci on phenotype in Hydractinia symbiolongicarpus (Cnidaria: Hydrozoa). Genetics 2007; 177:2101–2107.

    Article  PubMed  CAS  Google Scholar 

  70. Nicotra ML, Powell AE, Rosengarten RD et al. A Hypervariable Invertebrate Allodeterminant. Current Biology 2009; 19:583–589.

    Article  PubMed  CAS  Google Scholar 

  71. Nyholm SV, Passegue E, Ludington WB et al. fester, A candidate allorecognition receptor from a primitive chordate. Immunity 2006; 25:163–173.

    Article  PubMed  CAS  Google Scholar 

  72. Khalturin K, Panzer Z, Cooper MD et al. Recognition strategies in the innate immune system of ancestral chordates. Mol Immunol 2004; 41:1077–1087.

    Article  PubMed  CAS  Google Scholar 

  73. Kuznetsov SG, Anton-Erxleben F, Bosch TCG. Epithelial interactions in Hydra: apoptosis in interspecies grafts is induced by detachment from the extracellular matrix. J Exp Biol 2002; 205:3809–3817.

    PubMed  Google Scholar 

  74. Kuznetsov SG, Bosch TCG. Self nonself recognition in Cnidaria: contact to allogeneic tissue does not result in elimination of nonself cells in Hydra vulgaris. Zoology 2003; 106:109–116.

    Article  PubMed  CAS  Google Scholar 

  75. Theodor JL. Distinction between Self and Not-Self in Lower Invertebrates. Nature 1970; 227:690–692.

    Article  PubMed  CAS  Google Scholar 

  76. Thomas PG, Doherty PC. New approaches in immunotherapy. Science 2010; 327:249.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas C. G. Bosch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Augustin, R., Bosch, T.C.G. (2010). Cnidarian Immunity: A Tale of Two Barriers. In: Söderhäll, K. (eds) Invertebrate Immunity. Advances in Experimental Medicine and Biology, vol 708. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8059-5_1

Download citation

Publish with us

Policies and ethics