Skip to main content

State Estimation Over an Unreliable Network

  • Chapter
  • First Online:
Wireless Networking Based Control
  • 875 Accesses

Abstract

In this chapter, we consider Kalman filtering over a packet-delaying network. Given the probability distribution of the delay, we can completely characterize the filter performance via a probabilistic approach. We assume the estimator maintains a buffer of length Dso that at each time k, the estimator is able to retrieve all available data packets up to time \(k - D + 1\). Both the cases of sensor with and without necessary computation capability for filter updates are considered. When the sensor has no computation capability, for a given D, we give lower and upper bounds on the probability for which the estimation error covariance is within a prescribed bound. When the sensor has computation capability, we show that the previously derived lower and upper bounds are equal to each other. An approach for determining the minimum buffer length for a required performance in probability is given and an evaluation on the number of expected filter updates is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Since (A,C) is assumed to be observable and \((A,\sqrt{Q})\)controllable, from standard Kalman filtering analysis, P ∗exists.

  2. 2.

    Note that we use the superscript kin \(\hat{{f}}_{k-i}^{k}\)to emphasize that it depends on the current time, k. For example, if \({d}_{k-i} = i + 1\), i.e., \({\gamma }_{k-i} = 0\)and \({\gamma }_{k-i}^{k+1} = 1\), then \(\hat{{f}}_{k-i}^{k} = h\)and \(\hat{{f}}_{k-i}^{k+1} =\tilde{ g} \circ h\).

References

  1. R. W. Brockett and D. Liberzon. Quantized feedback stabilization of linear systems. IEEE Transactions on Automatic Control, 45, July 2000.

    Google Scholar 

  2. Geoffrey Grimmett and David Stirzaker. Probability and Random Processes. Oxford University Press, 3 edition, 2001.

    Google Scholar 

  3. J. P. Hespanha, P. Naghshtabrizi, and Y. Xu. A survey of recent results in networked control systems, volume 95. Proceedings of the IEEE, January 2007.

    Google Scholar 

  4. M. Huang and S. Dey. Stability of kalman filtering with markovian packet losses. Automatica, 43:598–607, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  5. Xiangheng Liu and Andrea Goldsmith. Kalman filtering with partial observation losses. pages 4180– 4186. In Proceedings of the IEEE Conference on Decision and Control, 2004.

    Google Scholar 

  6. A. S. Matveev and A. V. Savkin. The problem of state estimation via asynchronous communication channels with irregular transmission times. IEEE Transactions on Automatic Control, 48:670–676, 2003.

    Article  MathSciNet  Google Scholar 

  7. G. N. Nair and R. J. Evans. Communication-limited stabilization of linear systems. In Proceedings of the 39th Conf. on Decision and Contr., volume 1, pages 1005–1010, Dec 2000.

    Google Scholar 

  8. S. Nakamori, R. Caballero-Aguila, A. Hermoso-Carazo, and J. Linares-Perez. Recursive estimators of signals from measurements with stochastic delays using covariance information. Applied Mathematics and Computation, 162:65–79, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  9. J. Nilsson. Real Time Control Systems with Delays. PhD thesis, Lund Institute of Technology, Lund, Sweden, 1998.

    Google Scholar 

  10. I. R. Petersen and A. V. Savkin. Multi-rate stabilization of multivariable discrete-time linear systems via a limited capacity communication channel. In Proceedings of the 40th Conf. on Decision and Contr., volume 1, pages 304–309, Dec 2001.

    Google Scholar 

  11. A. Ray, L. W. Liou, and J. H. Shen. State estimation using randomly delayed measurements. J. Dyn. Syst., Measurement Contr., 115:19–26, 1993.

    Google Scholar 

  12. M. Sahebsara, T. Chen, and S. L. Shah. Optimal h2 filtering with random sensor delay, multiple packet dropout and uncertain observations. Int. J. Control, 80:292–301, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  13. L. Shi, M. Epstein, A. Tiwari, and R. M. Murray. Estimation with information loss: Asymptotic analysis and error bounds. In Proceedings of IEEE Conf. on Decision and Control, pages 1215–1221, Dec 2005.

    Google Scholar 

  14. L. Shi, M. Epstein, A. Tiwari, and R. M. Murray. Kalman filtering over a packet dropping network: a probabilistic approach. In Tenth International Conference on Control, Automation, Robotics and Vision, Dec 2008, Hanoi, Vietnam.

    Google Scholar 

  15. B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. Jordan, and S. Sastry. Kalman filtering with intermittent observations. IEEE Transactions on Automatic Control, 49(9):1453–1464, 2004.

    Article  MathSciNet  Google Scholar 

  16. S. Sun, L. Xie, W. Xiao, and Y. C. Soh. Optimal linear estimation for systems with multiple packet dropouts. Automatica, 44(5):1333–1342, May 2008.

    Article  MathSciNet  Google Scholar 

  17. S. C. Tatikonda. Control Under Communication Constraints. PhD thesis, Massachusetts Institute of Technology, 2000.

    Google Scholar 

  18. Z. Wang, D. W. C. Ho, and X. Liu. Robust filtering under randomly varying sensor delay with variance constraints. IEEE Trans. Circuits Systems-II: Express briefs, 51(6):320–326, 2004.

    Article  Google Scholar 

  19. W. S. Wong and R. W. Brockett. Systems with finite communication bandwidth-part i: State estimation problems. IEEE Transactions on Automatic Control, 42, Sept 1997.

    Google Scholar 

  20. W. S. Wong and R. W. Brockett. Systems with finite communication bandwidth-part ii: Stabilization with limited information feedback. IEEE Transactions on Automatic Control, 44, May 1999.

    Google Scholar 

  21. L. Xie and L. Xie. Stability of a random riccati equation with markovian binary switching. IEEE Transactions on Automatic Control, 53(7):1759–1764, 2008.

    Article  Google Scholar 

  22. E. Yaz and A. Ray. Linear unbiased state estimation for random models with sensor delay. In Proceedings of IEEE Conf. on Decision and Control, pages 47–52, Dec 1996.

    Google Scholar 

  23. H. Zhang and L. Xie. Control and Estimation of Systems with Input/Output Delays. Springer, 2007.

    Google Scholar 

  24. H. Zhang, L. Xie, D. Zhang, and Y. C. Soh. A re-organized innovation approach to linear estimation. IEEE Transactions on Automatic Control, 49(10):1810–1814, 2004.

    Article  MathSciNet  Google Scholar 

  25. ZigBee Alliance. http://www.zigbee.org/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Shi, L., Xie, L., Murray, R.M. (2011). State Estimation Over an Unreliable Network. In: Mazumder, S. (eds) Wireless Networking Based Control. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7393-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7393-1_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-7392-4

  • Online ISBN: 978-1-4419-7393-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics