Skip to main content

Impact Abrasive Machining

  • Chapter
  • First Online:
Machining with Abrasives

Abstract

Impact abrasive machining is a broad class of manufacturing processes that include surface cleaning, descaling, deburring, sand-blasting, shot-peening, abrasive water or air jet micromachining, and abrasive waterjet (AWJ) cutting, milling, turning, and drilling. Starting from the basic principles of fluid and solid mechanics, this chapter describes the underlying physical processes and mechanisms affecting jet formation and material removal, and leads to a practical discussion of factors affecting process performance. Adaptations of the basic cutting process to operations such as milling, turning, micromachining, surface cleaning, or surface treatment are explained; and various means for process improvement are discussed. Throughout, focus is on AWJ cutting as the common generic process, from which all other processes are treated as special cases. This chapter is suitable for practicing engineers and researchers, and includes an extensive list of references to guide further study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hutchings IM (1992) Tribology: friction and wear of engineering materials. Edward Arnold, London

    Google Scholar 

  2. Ludema KC (1996) Friction, wear, lubrication: a textbook in tribology. CRC Press, Boca Raton

    Google Scholar 

  3. Rabinowicz E (1995) Friction and wear of materials. Wiley-Interscience, New York

    Google Scholar 

  4. Stachowiak GW, Batchelor AW (2005) Engineering tribology. Elsevier Butterworth-Heinemann, Amsterdam

    Google Scholar 

  5. Blazynski TZ (1983) Explosive welding, forming, and compaction. Applied Science, London

    Google Scholar 

  6. Ezra AA (1973) Principles and practice of explosive metalworking. Industrial Newspapers, London,

    Google Scholar 

  7. Ritter JE (1992) Erosion of ceramic materials. Trans Tech Pub., Zurich

    Google Scholar 

  8. Kleis I, Kulu P (2008) Solid particle erosion: occurrence, prediction and control. Springer, London

    Google Scholar 

  9. Engel PA (1976) Impact wear of materials. Elsevier, Amsterdam

    Google Scholar 

  10. Springer GS (1976) Erosion by liquid impact. Scripta Pub., Washington

    Google Scholar 

  11. Preece CM (1979) Erosion. Academic Press, New York

    Google Scholar 

  12. Melosh HJ (1989) Impact cratering. Oxford University Press, New York

    Google Scholar 

  13. Kaczmarek J (1976) Principles of machining by cutting, abrasion and erosion. P. Peregrinus, Stevenage, England

    Google Scholar 

  14. Marinescu ID, Rowe WB, Dimitrov B, Inasaki I (2004) Tribology of abrasive machining processes. William Andrew, Norwich

    Google Scholar 

  15. Marinescu ID, Rowe WB, Dimitrov B, Inasaki I (2007) Handbook of machining with grinding wheels. CRC, Boca Raton

    Google Scholar 

  16. Malkin S, Guo C (2008) Grinding technology: theory and application of machining with abrasives. Industrial Press, New York

    Google Scholar 

  17. Shaw MC (1996) Principles of abrasive processing. Clarendon Press, Oxford

    Google Scholar 

  18. Flow International. http://www.flowcorp.com/. Accessed 7/2009

  19. Haskel Pumps. http://www.haskel.com.au/. Accessed 7/2009

  20. Hashish M (2009) Trends and cost analysis of AWJ operation at 600 MPa pressure. J Press Vessel Technol Trans ASME 131: 021410: 1-7

    Google Scholar 

  21. Labus TJ (2001) High pressure equipment and systems. In: Labus TJ, Savanick GA (eds) An overview of waterjet fundamentals and applications, 5th Ed. Waterjet Technology Assoc., Saint Louis

    Google Scholar 

  22. Waterjets.Org. http://www.waterjets.org/. Accessed 7/2009

  23. Water Jetting Directory. http://www.waterjettingdirectory.com/waterjet.htm. Accessed 7/2009

  24. WaterJet Technology Association. http://www.wjta.org/. Accessed 7/2009

  25. Water Jetting Association. http://www.waterjetting.org.uk/. Accessed 7/2009

  26. Al-Obaid YF (1995) Shot peening mechanics: experimental and theoretical analysis. Mech Mater 19: 251–260

    Google Scholar 

  27. Kobayashi M, Matsui T, Murakami Y (1998) Mechanism of creation of compressive residual stress by shot peening. Int J Fatigue 20: 351–357

    Google Scholar 

  28. Wang S, Li Y, Yao M, Wang R (1998) Compressive residual stress introduced by shot peening. J Mater Process Technol 73: 64–73

    Google Scholar 

  29. Ramulu M, Kunaporn S, Arola D, Hashish M, Hopkins J (2000) Waterjet machining and peening of metals. J Press Vessel Technol Trans ASME 122: 90–95

    Google Scholar 

  30. Kunaporn S, Ramulu M, Hashish M (2005) Mathematical modeling of ultra-high-pressure waterjet peening. J Eng Mater Technol Trans ASME 127: 186–191

    Google Scholar 

  31. Ellermaa RRR (1993) Erosion prediction of pure metals and carbon steels. Wear 162–164: 1114–1122

    Google Scholar 

  32. Unified Abrasives Manufacturers’ Association. http://www.uama.org/. Accessed 7/2009

  33. FEPA. http://www.fepa-abrasives.org/. Accessed 7/2009

  34. British Abrasives Federation. http://www.thebaf.org.uk/. Accessed 7/2009

  35. Abrasive Engineering Society. http://www.abrasiveengineering.com/. Accessed 7/2009

  36. Fox RW, McDonald AT, Pritchard PJ (2009) Introduction to fluid mechanics, 7th Ed. Wiley, Hoboken

    Google Scholar 

  37. Momber AW, Kovacevic R (1998) Principles of abrasive water jet machining. Springer, London

    MATH  Google Scholar 

  38. Korobkin A (2004) Analytical models of water impact. Eur J Appl Math 15: 821–838

    MATH  MathSciNet  Google Scholar 

  39. Korobkin AA (1997) Asymptotic theory of liquid-solid impact. Philos Trans R Soc A Math Phys Eng Sci 355: 507–522

    MATH  MathSciNet  Google Scholar 

  40. Korobkin AA, Pukhnachov VV (1988) Initial stage of water impact. Annu Rev Fluid Mech 20: 159–185

    Google Scholar 

  41. Battistin D, Iafrati A (2003) Hydrodynamic loads during water entry of two-dimensional and axisymmetric bodies. J Fluids Struct 17: 643–664

    Google Scholar 

  42. May A, Woodhull JC (1950) The virtual mass of a sphere entering water vertically. J Appl Phys 21: 1285–1289

    Google Scholar 

  43. May A, Woodhull JC (1948) Drag coefficients of steel spheres entering water vertically. J Appl Phys 19: 1109–1121

    Google Scholar 

  44. Shiffman M, Spencer DC (1945) The force of impact on a sphere striking a water surface, AMP Report 42. 2R. AMG-New York University, New York

    Google Scholar 

  45. Chow C-Y (1979) An introduction to computational fluid mechanics. Wiley, New York

    MATH  Google Scholar 

  46. Nguyen T, Shanmugam DK, Wang J (2008) Effect of liquid properties on the stability of an abrasive waterjet. Int J Mach Tools Manuf 48: 1138–1147

    Google Scholar 

  47. Labus TJ, Neusen KF, Alberts DG, Gores TJ (1991) Factors influencing the particle size distribution in an abrasive waterjet. J Eng Ind Trans ASME 113: 402–411

    Google Scholar 

  48. Vijay MM (2001) Fluid mechanics of jets. In: Labus TJ, Savanick GA (eds) An overview of waterjet fundamentals and applications, 5th Ed. Waterjet Technology Assoc., Saint Louis

    Google Scholar 

  49. Momber AW, Kovacevic R (1999) An energy balance of high-speed abrasive water jet erosion. Proc Inst Mech Eng Part J J Eng Tribol 213: 463–472

    Google Scholar 

  50. Whiting CE, Graham EE, Ghorashi B (1990) Evaluation of parameters in a fluid cutting equation. J Eng Ind Trans ASME 112: 240–244

    Google Scholar 

  51. Lesser MB (1981) Analytic solutions of liquid-drop impact problems. Proc R Soc A Math Phys Eng Sci 377: 289–308

    MathSciNet  Google Scholar 

  52. Pack DC, Evans WM (1951) Penetration by high-velocity (‘Munroe’) jets: I. Proc Phys Soc B 64: 298–302

    Google Scholar 

  53. Wood B (2001) Cleaning applications for waterjets. In: Labus TJ, Savanick GA (eds) An overview of waterjet fundamentals and applications, 5th Ed. Waterjet Technology Assoc., Saint Louis

    Google Scholar 

  54. Summers DA (1995) Waterjetting technology. E & FN Spon, London

    Google Scholar 

  55. Hashish M (1994) Observations of wear of abrasive-waterjet nozzle materials. J Tribol-Trans ASME 116: 439–444

    Google Scholar 

  56. Li HZ, Wang J, Fan JM (2009) Analysis and modelling of particle velocities in micro-abrasive air jet. Int J Mach Tools Manuf 49: 850–858

    Google Scholar 

  57. Shimizu S, Wu Z-L (1996) Acceleration of abrasive particles in premixed abrasive water jet nozzle. JSME Int J 39: 562–567

    Google Scholar 

  58. Tazibt A, Parsy F, Abriak N (1996) Theoretical analysis of the particle acceleration process in abrasive water jet cutting. Comput Mater Sci 5: 243–254

    Google Scholar 

  59. Wang J (2003) Abrasive waterjet machining of engineering materials. Trans Tech Publications, Uetikon-Zuerich, Switzerland

    Google Scholar 

  60. Liu H, Wang J, Kelson N, Brown RJ (2004) A study of abrasive waterjet characteristics by CFD simulation. J Mater Process Technol 153–154: 488–493

    Google Scholar 

  61. Wang J (2009) Particle velocity models for ultra-high pressure abrasive waterjets. J Mater Process Technol 209: 4573–4577

    Google Scholar 

  62. Prisco U, D’Onofrio MC (2008) Three-dimensional CFD simulation of two-phase flow inside the abrasive water jet cutting head. Int J Comp Meth Eng Sci Mech 9: 300–319

    MATH  Google Scholar 

  63. Ye J, Kovacevic R (1999) Turbulent solid-liquid flow through the nozzle of premixed abrasive water jet cutting systems. Proc Inst Mech Eng B J Eng Manuf 213: 59–67

    Google Scholar 

  64. Yong Z, Kovacevic R (1997) Simulation of chaotic particle motion in particle-laden jetflow and application to abrasive waterjet machining. J Fluids Eng Trans ASME 119: 435–442

    Google Scholar 

  65. Johnson KL (1985) Contact mechanics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  66. Galin LA (1961) Contact problems in the theory of elasticity. Dept. of Mathematics, North Carolina State College, Raleigh

    Google Scholar 

  67. Gladwell GML (1980) Contact problems in the classical theory of elasticity. Sijthoff & Noordhoff, Alphen aan den Rijn, The Netherlands

    MATH  Google Scholar 

  68. Hamilton GM (1983) Explicit equations for the stresses beneath a sliding spherical contact. Proc Inst Mech Eng C 197: 53–59

    Google Scholar 

  69. Sackfield A, Hills D (1983) A note on the hertz contact problem: a correlation of standard formulae. J Strain Anal 18: 195–197

    Google Scholar 

  70. Neilson JH, Gilchrist A (1968) Erosion by a stream of solid particles. Wear 11: 111–122

    Google Scholar 

  71. Finnie I (1960) Erosion of surfaces by solid particles. Wear 3: 87–103

    Google Scholar 

  72. Bitter JGA (1963) A study of erosion phenomena, Part I. Wear 6: 5–21

    Google Scholar 

  73. Bitter JGA (1963) A study of erosion phenomena, Part II. Wear 6: 169–190

    Google Scholar 

  74. Beckmann G, Gotzmann J (1981) Analytical model of the blast wear intensity of metals based on a general arrangement for abrasive wear. Wear 73: 325–353

    Google Scholar 

  75. Bowden FP, Field JE (1964) The brittle fracture of solids by liquid impact, by solid impact, and by shock. Proc R Soc A Math Phys Eng Sci 282: 331–352

    Google Scholar 

  76. Sheldon GL, Finnie I (1966) The mechanism of material removal in the erosive cutting of brittle materials. J Eng Ind Trans ASME 88: 393–400

    Google Scholar 

  77. Wiederhorn SM, Lawn BR (1977) Strength degradation of glass resulting from impact with spheres. J Am Ceram Soc 60: 451–458

    Google Scholar 

  78. Evans AG, Wilshaw TR (1977) Dynamic solid particle damage in brittle materials: an appraisal. J Mater Sci 12: 97–116

    Google Scholar 

  79. Evans AG, Gulden ME, Rosenblatt M (1978) Impact damage in brittle materials in the elastic-plastic response regime. Proc R Soc A Math Phys Eng Sci 361: 343–365

    Google Scholar 

  80. Hashish M (1984) A modeling study of metal cutting with abrasive waterjets. J Eng Mater Technol Trans ASME 106: 88–100

    Google Scholar 

  81. Hashish M (1989) A model for abrasive-waterjet (AWJ) machining. J Eng Mater Technol Trans ASME 111: 154–162

    Google Scholar 

  82. Finnie I, McFadden DH (1978) On the velocity dependence of the erosion of ductile metals by solid particles at low angles of incidence. Wear 48: 181–190

    Google Scholar 

  83. Lemma E, Deam R, Chen L (2005) Maximum depth of cut and mechanics of erosion in AWJ oscillation cutting of ductile materials. J Mater Process Technol 160: 188–197

    Google Scholar 

  84. Paul S, Hoogstrate AM, Van Luttervelt CA, Kals HJJ (1998) Analytical and experimental modelling of the abrasive water jet cutting of ductile materials. J Mater Process Technol 73: 189–199

    Google Scholar 

  85. El-Domiaty AA, Shabara MA, Abdel-Rahman AA, Al-Sabeeh AK (1996) On the modelling of abrasive waterjet cutting. Int J Adv Manuf Technol 12: 255–265

    Google Scholar 

  86. Ness E, Zibbell R (1996) Abrasion and erosion of hard materials related to wear in the abrasive waterjet. Wear 196: 120–125

    Google Scholar 

  87. El-Domiaty AA, Abdel-Rahman AA (1997) Fracture mechanics-based model of abrasive waterjet cutting for brittle materials. Int J Adv Manuf Technol 13: 172–181

    Google Scholar 

  88. Zeng J, Kim TJ (1996) An erosion model of polycrystalline ceramics in abrasive waterjet cutting. Wear 193: 207–217

    Google Scholar 

  89. Hashish M (1988) Visualization of the abrasive-waterjet cutting process. Exp Mech 28: 159–169

    Google Scholar 

  90. Hashish M (1991) Characteristics of surfaces machined with abrasive-waterjets. J Eng Mater Technol Trans ASME 113: 354–362

    Google Scholar 

  91. Chen L, Siores E, Wong WCK (1996) Kerf characteristics in abrasive waterjet cutting of ceramic materials. Int J Mach Tools Manuf 36: 1201–1206

    Google Scholar 

  92. Chen FL, Wang J, Lemma E, Siores E (2003) Striation formation mechanisms on the jet cutting surface. J Mater Process Technol 141: 213–218

    Google Scholar 

  93. Wang J, Wong WCK (1999) A study of abrasive waterjet cutting of metallic coated sheet steels. Int J Mach Tools Manuf 39: 855–870

    Google Scholar 

  94. Wang J (1999) Machinability study of polymer matrix composites using abrasive waterjet cutting technology. J Mater Process Technol 94: 30–35

    Google Scholar 

  95. Wang J (1999) Abrasive waterjet machining of polymer matrix composites – cutting performance, erosive process and predictive models. Int J Adv Manuf Technol 15: 757–768

    Google Scholar 

  96. Wang J, Guo DM (2002) A predictive depth of penetration model for abrasive waterjet cutting of polymer matrix composites. J Mater Process Technol 121: 390–394

    Google Scholar 

  97. Wang J (2007) Predictive depth of jet penetration models for abrasive waterjet cutting of alumina ceramics. Int J Mech Sci 49: 306–316

    Google Scholar 

  98. Kovacevic R (1991) Surface texture in abrasive waterjet cutting. J Manuf Syst 10: 32–40

    Google Scholar 

  99. Kovacevic R, Fang M (1994) Modeling of the influence of the abrasive waterjet cutting parameters on the depth of cut based on fuzzy rules. Int J Mach Tools Manuf 34: 55–72

    Google Scholar 

  100. Hashish M (1993) Effect of beam angle in abrasive-waterjet machining. J Eng Ind Trans ASME 115: 51–56

    Google Scholar 

  101. Shanmugam DK, Wang J, Liu H (2008) Minimisation of kerf tapers in abrasive waterjet machining of alumina ceramics using a compensation technique. Int J Mach Tools Manuf 48: 1527–1534

    Google Scholar 

  102. Xu S, Wang J (2006) A study of abrasive waterjet cutting of alumina ceramics with controlled nozzle oscillation. Int J Adv Manuf Technol 27: 693–702

    Google Scholar 

  103. Wang J (2009) A focused review on enhancing the abrasive waterjet cutting performance by using controlled nozzle oscillation. Key Eng Mater 404: 33–44

    Google Scholar 

  104. Wang J, Guo DM (2003) The cutting performance in multipass abrasive waterjet machining of industrial ceramics. J Mater Process Technol 133: 371–377

    Google Scholar 

  105. Wang J, Zhong Y (2009) Enhancing the depth of cut in abrasive waterjet cutting of alumina ceramics by using multipass cutting with Nozzle oscillation. Mach Sci Technol 13: 76–91

    Google Scholar 

  106. Kovacevic R, Mohan R, Beardsley HE (1996) Monitoring of thermal energy distribution in abrasive waterjet cutting using infrared thermography. J Manuf Sci Eng Trans ASME 118: 555–563

    Google Scholar 

  107. Ohadi MM, Ansari AL, Hashish M (1992) Thermal energy distributions in the workpiece during cutting with an abrasive waterjet. J Eng Ind Trans ASME 114: 67–73

    Google Scholar 

  108. Fowler G, Pashby IR, Shipway PH (2009) The effect of particle hardness and shape when abrasive water jet milling titanium alloy Ti6Al4V. Wear 266: 613–620

    Google Scholar 

  109. Hashish M (1998) Controlled-depth milling of isogrid structures with AWJs. J Manuf Sci Eng Trans ASME 120: 21–27

    Google Scholar 

  110. Hocheng H, Tsai HY, Shiue JJ, Wang B (1997) Feasibility study of abrasive-waterjet milling of fiber-reinforced plastics. J Manuf Sci Eng Trans ASME 119: 133–142

    Google Scholar 

  111. Paul S, Hoogstrate AM, Van Luttervelt CA, Kals HJJ (1998) An experimental investigation of rectangular pocket milling with abrasive water jet. J Mater Process Technol 73: 179–188

    Google Scholar 

  112. Hashish M (1989) Investigation of milling with abrasive-waterjets. J Eng Ind Trans ASME 111: 158–166

    Google Scholar 

  113. Feng YX, Huang CZ, Wang J, Hou RG, Lu XY (2007) An experimental study on milling Al2O3 ceramics with abrasive waterjet. Key Eng Mater 339: 500–504

    Google Scholar 

  114. Zeng J, Kim TJ (1996) An erosion model for abrasive waterjet milling of polycrystalline ceramics. Wear 199: 275–282

    Google Scholar 

  115. Axinte DA, Stepanian JP, Kong MC, McGourlay J (2009) Abrasive waterjet turning-An efficient method to profile and dress grinding wheels. Int J Mach Tools Manuf 49: 351–356

    Google Scholar 

  116. Manu R, Babu NR (2009) An erosion-based model for abrasive waterjet turning of ductile materials. Wear 266: 1091–1097

    Google Scholar 

  117. Ansari AI, Hashish M, Ohadi MM (1992) Flow visualization study of the macromechanics of abrasive-waterjet turning. Exp Mech 32: 358–364

    Google Scholar 

  118. Ansari AI, Hashish M (1995) Effect of abrasive waterjet parameters on volume removal trends in turning. J Eng Ind Trans ASME 117: 475–484

    Google Scholar 

  119. Zhong ZW, Han ZZ (2002) Turning of glass with abrasive waterjet. Mater Manuf Process 17: 339–349

    Google Scholar 

  120. Wang J, Nguyen T, Pang KL (2009) Mechanisms of microhole formation on glasses by an abrasive slurry jet. J Appl Phys 105(4): 044906.1–044906.4

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer US

About this chapter

Cite this chapter

Ali, Y.M., Wang, J. (2011). Impact Abrasive Machining. In: Jackson, M., Davim, J. (eds) Machining with Abrasives. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7302-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7302-3_9

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-7301-6

  • Online ISBN: 978-1-4419-7302-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics