Skip to main content

Cell Death and Life in Cancer: Mathematical Modeling of Cell Fate Decisions

  • Conference paper
  • First Online:
Advances in Systems Biology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 736))

  • 3001 Accesses

Abstract

Tumor development is characterized by a compromised balance between cell life and death decision mechanisms, which are tightly regulated in normal cells. Understanding this process provides insights for developing new treatments for fighting with cancer. We present a study of a mathematical model describing cellular choice between survival and two alternative cell death modalities: apoptosis and necrosis. The model is implemented in discrete modeling formalism and allows to predict probabilities of having a particular cellular phenotype in response to engagement of cell death receptors. Using an original parameter sensitivity analysis developed for discrete dynamic systems, we determine variables that appear to be critical in the cellular fate decision and discuss how they are exploited by existing cancer therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell;144(5): 646–674.

    Article  CAS  PubMed  Google Scholar 

  2. McCormick F (2004) Cancer: survival pathways meet their end. Nature 428(6980):267–269.

    Article  CAS  PubMed  Google Scholar 

  3. Kroemer G., et al. (2008) Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ 16(1):3–11.

    Article  PubMed  Google Scholar 

  4. Calzone L, Tournier L, Fourquet S, Thieffry D, Zhivotovsky B, Barillot E, Zinovyev A. (2010) Mathematical modelling of cell-fate decision in response to death receptor engagement. PLoS Comput Biol 6(3):e1000702.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Van Herreweghe F, Festjens N, Declercq W, Vandenabeele P (2010) Tumor necrosis factor-mediated cell death: to break or to burst, that’s the question. Cell Mol Life Sci 67(10): 1567–1579.

    Article  CAS  PubMed  Google Scholar 

  6. Balazsi G, van Oudenaarden A, Collins JJ (2011) Cellular decision making and biological noise: from microbes to mammals. Cell 144(6):910–925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Naldi A, Remy E, Thieffry D, Chaouiya C (2009) A reduction method for logical regulatory graphs preserving essential dynamical properties. Lecture Notes in Computer Science 5688:266–280.

    Article  Google Scholar 

  8. Chaouiya C, de Jong H, Thieffry D. (2006) Dynamical modeling of biological regulatory networks. Biosystems 84(2):77–80.

    Article  PubMed  Google Scholar 

  9. Tournier L. and Chaves M. (2009) Uncovering operational interactions in genetic networks using asynchronous boolean dynamics. J Theor Biol 260(2):196–209.

    Article  CAS  PubMed  Google Scholar 

  10. Feller W (1968) An introduction to probability theory and its applications, vol. 1 Wiley, New York.

    Google Scholar 

  11. Turanyi, T (1990). Sensitivity analysis of complex kinetic systems. Tools and applications. J Math Chem 5:203–248.

    CAS  Google Scholar 

  12. Fauré A, Naldi A, Chaouiya C, Thieffry D (2006) Dynamical analysis of a generic boolean model for the control of the mammalian cell cycle. Bioinformatics 22(14):e124–e131.

    Article  PubMed  Google Scholar 

  13. Naldi A, Berenguier D, Faure A, Lopez F, Thieffry D, Chaouiya C. (2009) Logical modelling of regulatory networks with GINsim 2.3. Biosystems 97(2):134–139.

    Article  CAS  PubMed  Google Scholar 

  14. Rampino N, Yamamoto H, Ionov Y, Li Y, Sawai H, et al. (1997) Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science 275: 967–969.

    Article  CAS  PubMed  Google Scholar 

  15. Lissat A, Vraetz T, Tsokos M, Klein R, Braun M, et al. (2007) Interferon-gamma sensitizes resistant Ewing’s sarcoma cells to tumor necrosis factor apoptosis-inducing ligand-induced apoptosis by up-regulation of caspase-8 without altering chemosensitivity. Am J Pathol 170:1917–1930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Teitz T, Lahti JM, Kidd VJ (2001) Aggressive childhood neuroblastomas do not express caspase-8: an important component of programmed cell death. J Mol Med 79:428–436.

    Article  CAS  PubMed  Google Scholar 

  17. Shivapurkar N, Toyooka S, Eby MT, Huang CX, Sathyanarayana UG, et al. (2002) Differential inactivation of caspase-8 in lung cancers. Cancer Biol Ther 1:65–69.

    Article  CAS  PubMed  Google Scholar 

  18. Croce CM (2008) Oncogenes and cancer. N Engl J Med 358:502–511.

    Article  CAS  PubMed  Google Scholar 

  19. Karin M, Cao Y, Greten FR, Li ZW (2002) NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2:301–310.

    Article  CAS  PubMed  Google Scholar 

  20. Dai Z, Zhu WG, Morrison CD, Brena RM, Smiraglia DJ, et al. (2003) A comprehensive search for DNA amplification in lung cancer identifies inhibitors of apoptosis cIAP1 and cIAP2 as candidate oncogenes. Hum Mol Genet 12:791–801.

    Article  CAS  PubMed  Google Scholar 

  21. Imoto I, Tsuda H, Hirasawa A, Miura M, Sakamoto M, et al. (2002) Expression of cIAP1, a target for 11q22 amplification, correlates with resistance of cervical cancers to radiotherapy. Cancer Res 62:4860–4866.

    CAS  PubMed  Google Scholar 

  22. Imoto I, Yang ZQ, Pimkhaokham A, Tsuda H, Shimada Y, et al. (2001) Identification of cIAP1 as a candidate target gene within an amplicon at 11q22 in esophageal squamous cell carcinomas. Cancer Res 61:6629–6634.

    CAS  PubMed  Google Scholar 

  23. Chen DJ, Huerta S (2009) Smac mimetics as new cancer therapeutics. Anticancer Drugs 20(8): 646–658.

    Article  CAS  PubMed  Google Scholar 

  24. Ready N, Karaseva NA, Orlov SV, Luft AV, Popovych O, Holmlund JT, Wood BA, Leopold L (2011) Double-blind, placebo-controlled, randomized phase 2 study of the proapoptotic agent AT-101 plus docetaxel, in second-line non-small cell lung cancer. J Thorac Oncol 6(4): 781–785.

    Article  PubMed  Google Scholar 

  25. Lavrik IN (2010) Systems biology of apoptosis signaling networks. Curr Opin Biotechnol 21(4):551–555.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge support by the APO-SYS EU FP7 project. A. Zinovyev, S. Fourquet, L. Calzone and E. Barillot are members of the team “Systems Biology of Cancer”, Equipe labellisee par la Ligue Nationale Contre le Cancer. L. Tournier is member of the Systems Biology team in the laboratory MIG of INRA (French Institute for Agronomical Research). The study was also funded by the Projet Incitatif Collaboratif “Bioinformatics and Biostatistics of Cancer” at Institut Curie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei Zinovyev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this paper

Cite this paper

Zinovyev, A., Fourquet, S., Tournier, L., Calzone, L., Barillot, E. (2012). Cell Death and Life in Cancer: Mathematical Modeling of Cell Fate Decisions. In: Goryanin, I.I., Goryachev, A.B. (eds) Advances in Systems Biology. Advances in Experimental Medicine and Biology, vol 736. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7210-1_15

Download citation

Publish with us

Policies and ethics